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ABSTRACT 

KEYWORDS: Blowout; Thermoacoustic instability; Multifractality; Recurrence 

Quantification Analysis; Flame dynamics; Population dynamics; 

Absorbing state. 

 

Many gas turbine combustors are operated in fuel lean conditions in order to ensure 

reduced emissions. However, combustors operating in lean conditions are susceptible to 

flame blowout and thermoacoustic instability. Traditionally, flame blowout is described 

as loss of static stability of the combustion system whereas thermoacoustic instability is 

seen as loss of dynamic stability of the system. At blowout, the system transitions from a 

stable reacting state to a non-reacting state indicating a loss of static stability of the 

reaction. However, this simple description of stability margin is inadequate since recent 

studies have shown that combustors exhibit complex nonlinear behavior prior to blow 

out. Recently, it was also shown that combustion noise that characterizes the regime of 

stable operation, itself is dynamically complex and exhibit multifractal characteristics. 

Researchers have already described the transition from combustion noise to combustion 

instability as a loss of multifractality. In this work, we characterize the complexity of 

dynamics prior to blowout and provide a multifractal description for lean blowout in 

combustors with turbulent flow. Thus, we bring in a unified framework within which 

both thermoacoustic instability and blowout can be described. Further, we introduce a 

method for predicting an impending blowout based on a multifractal description of 

blowout.  
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It is known that combustion systems with turbulent reactive flow exhibit intermittency 

prior to flame blowout. We characterize the variation of this intermittent behavior as lean 

blowout is approached using recurrence quantification analysis and thereby provide 

viable precursors to an impending blowout. We observe that as blowout is approached, 

the system exhibits increased aperiodicity in oscillations. We show that statistical 

quantities estimated from recurrence plots such as recurrence rate, trapping time and 

entropy of diagonal lines can act as precursor to blowout. Further, we suggest a method 

of recurrence quantification analysis that is computationally less expensive and hence 

more suitable for online prognosis of dynamic transitions in a turbulent combustor. 

We observe that, on the reduction of equivalence ratio from stoichiometry to lean 

conditions, turbulent combustors exhibit intermittency before the occurrence of 

thermoacoustic instability and before flame blowout. We compare the dynamic 

characteristics of intermittency prior to thermoacoustic instability and that prior to 

blowout. The analysis of the unsteady pressure fluctuations within the combustor 

suggests that both intermittencies are of type II. We also compare the flame dynamics 

during either state using high speed Mie scattering images acquired simultaneously with 

unsteady pressure. We observe that during both regimes of intermittency, the flame 

switches between two distinct patterns of oscillations; one where the flame oscillates in 

an aperiodic manner due to the inherent turbulent fluctuations, and another where the 

flame exhibits periodic roll-up as a consequence of the periodic vortex shedding at the 

dump plane. Nevertheless, it is observed that the flame dynamics during intermittency 

prior to thermoacoustic instability and prior to flame blowout are different. During 

intermittency before the occurrence of thermoacoustic instability, the flame along the 
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inner shear layer is stabilized by the stagnation point flow behind the bluff body. In 

contrast, during intermittency prior to blowout, the flame along the inner shear layer is 

stabilized by the recirculation zone created by the bluff body. We also observe that very 

close to blowout, the flame dynamics is aperiodic and is largely governed by the 

intermittent formation of flame holes. 

We introduce a low order model that can capture the complex dynamics of the combustor 

close to blowout. We consider the turbulent flame as a collection of flamelets. The model 

approaches the problem of flame stabilization in a turbulent combustor as a problem of 

population dynamics these flamelets. It is assumed that, the birth process of flamelet is 

analogues to the process of ignition of the reactants and the process of extinction of 

flamelet corresponds to the death of flamelet. A cellular automata model that captures the 

population dynamics of the flamelets is constructed. We show that the model is able to 

capture various characteristics of flame dynamics observed close to blowout. As we 

approach blowout, the modeled flame gets stretched, the number of flame holes in the 

flame increases and there is reduction of average concentration of free radicals. Finally, 

we show that the cellular automata model that represents the dynamics of the turbulent 

combustor undergoes an absorbing transition to an extinct phase imitating flame blowout 

in the turbulent combustor 
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CHAPTER 1 

Introduction 

Gas turbine engines are widely used in power generation and aviation industries. While 

they help us produce the ever needed mechanical and electrical energy from the stored 

chemical energy in the fossil fuels, they also produce a significant amount of pollutants. 

A major concern is the production of harmful oxides of nitrogen otherwise known as 

NOx. NOx are produced when the nitrogen present in the air reacts with oxygen in the 

high-temperature environment inside the combustor of a gas turbine engine. One of the 

techniques used in many combustors to reduce emissions is to employ ultra-lean 

premixed combustion which ensures low combustion temperature and consequently, 

reduced NOx emission. 

However, the operation of combustors at fuel-lean conditions is faced with challenges of 

flame blowout and thermoacoustic instability. Blowout is a state when the flame ceases to 

exist inside the combustor. Blowout can happen either through flame blow-off or flame 

extinction. On the other hand, thermoacoustic instability refers to the large amplitude 

acoustic oscillations that are established inside a combustor when the unsteady heat 

release rate from the combustor has a positive feedback with the acoustic perturbations. 

Near fuel-lean limits, combustors are susceptible to blowout and thermoacoustic 

instability due to the increased sensitivity of the flame to the flow perturbations. 

The flow velocities inside the combustors are usually much greater than the speed at 

which the flame can propagate into the flow. Hence, to stabilize or anchor the flame, a 

flame holding mechanism is incorporated in the combustor. Bluff-bodies, backward 
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facing step, swirlers and porous beds are a few among the different flame holding 

mechanisms that are used. Flame holders create regions of low velocity inside the 

combustor where the flame can be stabilized. Thus, they ensure that the unburned fuel-air 

mixture entering the combustor comes in contact with the hot gasses and free radicals 

produced during combustion, warranting its ignition and a sustained reaction inside the 

combustor. At lower equivalence ratios, due to the presence of excess air in reactants, the 

chemical time scale of the reaction increases and consequently, the flame speed reduces. 

Under these conditions, the flame is more susceptible to various perturbations in the flow 

and eventually loses its ability to anchor itself within the combustor and blows out. 

Various mechanisms have been proposed to explain blowout in terms of reaction kinetics, 

interaction between the flow field and the flame and the diffusion characteristics of the 

reactants (Glassman, 1996; Cheng & Kovitz 1957; Peters & Williams, 1983). Even 

though there are differences in the details, all of these studies unanimously point to the 

significance of competing mechanisms of the heat release and the heat loss from the 

reactive flow field in determining the blowout characteristics. 

Understanding flame blowout is essential since it can be very detrimental for a gas 

turbine engine. In military aircraft, rapid combat manures could induce transient 

fluctuations in the reactive flow which can induce flame blowout. An engine is prone to 

blowout during a rapid deceleration (throttle reduction), since the fuel flow rates tend to 

vary much faster than the airflow rates whose reduction rate is determined by the 

rotational inertia of the compressor. Further, in gas turbine engines, the combustor 

dynamics gets coupled with the dynamics of compressors and turbines. Hence, a failure 

to rapidly ignite the combustor post a blowout event would induce a compressor stall 
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causing its rotational speeds reduce to its windmilling value. Furthermore, the narrow 

stability margin for a relight at high altitudes would demand a descent of the aircraft to 

lower altitudes to relight combustor and thus recover from blowout. Traditionally, a 

flame stabilized inside a combustor is considered to be “statically stable”. Thus, flame 

blowout is regarded as the loss of static stability of the combustor (Lieuwen, 2007).  

In contrast, thermoacoustic instability is considered as loss of dynamic stability of the 

combustor and is caused due to the positive feedback between the unsteady heat release 

rate from combustion and  the acoustic field of the confinement (Lieuwen, 2007). 

Unsteadiness is inherent to the flame inside a gas turbine engine thanks to the turbulence 

in the reactive flow. This irregular flame fluctuations produce aperiodic pressure 

fluctuations (acoustic waves) inside the combustor known as combustion noise. 

Combustion noise has low amplitude and has a broadband frequency spectrum. However, 

at particular operating conditions, the flame has increased sensitivity to perturbations due 

to the complex interplay of various mechanisms that determine the stability of the flame. 

This increased sensitivity enhances the positive feedback between the acoustic field of 

the combustor and the flame fluctuations causing the growth of periodic oscillations 

inside the combustor. The amplitude of pressure fluctuations inside the combustor during 

thermoacoustic instability can be very high and can induce structural damage to the 

combustor. The periodic oscillations also cause increased heat transfer to the combustor 

walls causing thermal damage.  

There have been extensive studies regarding the dynamics of blowout and thermoacoustic 

instability. Initial studies focused on finding the stability margins for flame blowout and 

thermoacoustic instability for various combustor configurations. Further, as described 
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before, the loss of stability of flames at the lean blowout limit is described as a loss of 

static stability of the combustor; in contrast, thermoacoustic instability is considered as a 

loss of dynamic stability of the combustor (Lieuwen 2007). However, recent findings 

have suggested that both transition to thermoacoustic instability and transition to blowout 

occur through dynamic regimes that exhibit complex behavior (Gotoda  et al., 2012; 

Domen et al., 2015 ). Further, some of the recent studies (Nair & Sujith, 2014; Nair et al., 

2014) focused on the characterization of the complex dynamics observed during 

transition from combustion noise to thermoacoustic instability. The primary objective of 

this thesis is to characterize the complex dynamics of a combustor during transition from 

stable combustion blowout and provide an alternative description for the transition to 

blowout. We will also provide a unified framework to describe both transition to blowout 

and transition to thermoacoustic instability. 

1.1  Historic overview: Lean blowout  

1.1.1 Stability of the flame 

Most of the early studies in flame blowout focused on global flame stabilization 

characteristics. One of the early studies by Lewis and Von elbe (1938) suggested that 

flame blowout is caused due to the increased velocity gradients at the burner tip. In 

1950‟s various studies ventured to give better descriptions and explanations to blowout 

phenomenology for various different flame holder configuration (Zukoski & Marble 

1954, 1955; Williams et al., 1951). They were able to provide correlations based on 

different continuity criteria (mass and energy balance) to describe blowout. Zukoski & 

Marble (1956) suggested that the fresh air-fuel mixture in the shear layer ignites when it 
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interacts with the hot combustion products within the recirculation zone and a flame 

blowout happens when the ignition time delay is more than the resident time of the fresh 

reactants in the shear layer. A critical time delay of ignition for blowout was defined as, 

         ⁄  . Here,      is the length of the recirculation zone and     is the blowout 

velocity.    is found to be a function of the equivalence ratio. 

Longwell (1953) considered the recirculation zone to be a well-stirred reactor (WSR). He 

suggested that blowout happens when the reaction zone fails to generate enough heat to 

ignite the fresh reactants. Since the recirculation zone in practical combustors can seldom 

be compared to a perfectly homogeneous WSR, a correlation based on this assumption 

proves to be inaccurate for practical combustors. Splading (1953) and proposed that LBO 

is influenced by the ratio between the resident time of the reactants in the combustor and 

the reaction timescale represented by Damkh ler number, Da. Here, the chemical time 

scale associated with combustion is calculated from laminar flame speeds and thermal 

diffusivity.  

Another approach is to look at blowout as a collective flamelet extinction event (Plee & 

Mellor, 1979; Radhakrishnan et al., 1981). The effect of strain rates and flow 

characteristics on flamelet extinction was discussed by Yamagachi et al. (1985) and Pan 

et al. (1991). When blowout is considered as a collective flamelet extinction event, the 

ratio of the flow speed to the flame speed could also be used to characterize blowout. 

Blowout happens when this ratio exceeds one at critical locations in the combustor 

(Chaudhuri et al. 2010). In summary, all these studies indicate that the stability of the 

flame inside the combustor depends largely on the ability of hot products of the reaction 

to induce reaction of the incoming reactants.  
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This was further substantiated in a very detailed review of blowout of bluff body 

stabilized flames by Shanbhogue et al. (2009). Compiling the blowout data from over 

fifty previous studies, they developed correlations between the extinction stretch rates 

and extinction time scales. Further, they pointed out that recent research (Nair & Lieuwen 

2007) indicates that blowout happens through multiple stages, the local extinction along 

the flame sheet, large scale wake disruption, and the final flame blowout. They argued 

that simple correlations based on Da number be largely successful in predicting blowout 

limits since they contain essential physics to capture the first stage of the blowout. During 

the first stage of the blowout, flame holes form at various locations of the flame where 

the local strain rate exceeds the extinction strain rate which can be correlated with the 

local Damköhler number. However, they also noted that such correlations do not describe 

the second stage of the blowout which is governed by much more complex chemistry and 

flow dynamics. 

1.1.2 Flame dynamics prior to flame blowout 

In practical applications, the flame exhibits highly unsteady behavior prior to blowout. A 

detailed study of this behavior was performed by De Zilwa et al., (2000) using high-

speed flame images and pressure fluctuation signals from a turbulent combustor with a 

backward facing step to stabilize the flame. They observed that as lean blowout was 

approached, the flame exhibited transverse flapping, asymmetric flame dynamics and 

eventual extinction. The frequencies of these oscillations were found to be much less than 

the acoustic frequencies of the combustor.  

Further, Nair and Lieuwen (2007) identified the two stages of blowout in bluff body 

stabilized flames. In the first stage, momentary strain levels exceed the flames extinction 
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strain rates creating flame holes. However, the flame is observed to be rather symmetric 

during this state. In the second stage, the life of the flame holes increases due to enhance 

strain levels of the flow. This leads to large-scale wake disruption and vigorous flapping 

of the flame which induces acoustic oscillations with timescales as that of von Karman 

vortex shedding (Chaudhuri et al. 2010). They also observed that these acoustic 

oscillations had increased amplitude for the frequency spectrum ranging from 40 to100 

Hz. They also observed that as blowout was approached, the number and the frequency of 

extinction and reignition events increased and by characterizing these extinction and 

reignition events one could predict lean blowout. A similar study on blowout in swirl-

stabilized combustor was performed by Muruganandam (2006) which identified 

comparable dynamics close to flame blowout.   

Chaudhuri et al. (2010) used time-resolved chemiluminescence imaging along with 

simultaneous particle image velocimetry (PIV) and OH planar laser-induced fluorescence 

(PLIF) to investigate the interaction between flame fronts and shear layer vortices prior to 

blow out in a turbulent combustor with a bluff body stabilized flame. Based on the 

experimental observations, they were able to hypothesize a mechanism for flame 

blowout. As the equivalence ratio of the incoming reactants is reduced, the flame speed 

decreases. This causes the flame to shift into the shear layer vortices. The enhanced 

interaction between the shear layer vortices and the flame cause local strain rates along 

the flame to increase more than the extinction strain rates causing partial flame 

extinction. Further, due to the partial flame extinction, the unburned mixture enters the 

recirculation zone and burn inside the recirculation zone created by the bluff body due to 

favorable time scales. This causes chemiluminescence inside the recirculation zone. The 
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reaction inside the recirculation zone either reignites the shear layers and relates the 

flame or fails to reignite the shear layer. This corresponds to stage one of blowout as 

described by Nair & Lieuwen (2007). In case the reaction in the recirculation zone fails to 

reignite the shear layer, more of the flame along the shear layer  extinguishes. This 

induces absolute instability in the shear layer and the associated asymmetric mode 

oscillations cause flame flapping (Chaudhuri et al. 2010). This corresponds to stage 2 of 

blowout. Finally, the flame blowout happen, when the flame kernel inside the 

recirculation zone extinguishes. In some cases where the flame - acoustic coupling is very 

strong, the thermoacoustic oscillations themselves can induce flame blowout which  is 

called a thermoacoustically induced blowout (Kabiraj & Sujith, 2012). However, such 

cases are not considered in this thesis. 

The flame dynamics in specific combustor configurations and a more general review of 

the work on blowout in bluff body stabilized flame are given by Shanbogue et al. (2009). 

Blowout in swirl-stabilized flames were studied in detail by Stöher et al. (2011). They 

identified the significance of flame root in stabilizing the flame. Further, they showed 

that blowout happens when the flame root extinguishes for more than the time period of 

the precision of the precessing vortex core of the swirling flow field.  

1.1.3  Precursors to flame blowout 

Nair (2006) and Muruganandam (2006) studied the dynamics of flame near blowout by 

using signatures of acoustic perturbations and chemiluminescence measurements. They 

observed burst like behavior prior to blowout in both signals. This corresponded to the 

extinction and reignition events of flame within the combustor at low equivalence ratios. 

As blowout is approached they observed that the frequency of such events increased. 
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They used wavelet and statistical techniques on the acoustic pressure and OH* 

chemiluminescence signals to extract indicators to an impending blowout.  

Gotoda et al. (2011, 2012, 2014) used nonlinear time series analysis to study the onset of 

thermoacoustic oscillations as the equivalence ratio is reduced. Gotoda et al. (2012) 

established that the phase space corresponding to combustion oscillations prior to 

blowout exhibits multifractal characteristics. They also evaluated the degree of 

multifractality in terms of the equivalence ratio. They further emphasized that a 

multifractal analysis is indeed necessary to understand the nonlinear dynamics associated 

with these oscillations and that simple measures such as the divergence of phase space 

trajectories could not capture the rich dynamics at the blowout limit. In another recent 

study, Gotoda et al. (2014) described that the translation error, which quantifies the 

degree of parallelism of trajectories in the phase space, can be used as a precursor to 

detect LBO. Further, Domen et al. (2015) suggested that permutation entropy, 

quantifying the rank order pattern of components in phase space vectors constructed from 

the short time-series data of the acoustic pressure fluctuations, can also be used as an 

indicator to forewarn of LBO. 

Further, Mukhopadhyay et al. (2013) described the dynamics of blowout from its 

acoustic and chemiluminescence signature using symbolic time series analysis and 

suggested a precursor (an indicative measure) to detect the proximity of a combustor to 

blowout. By using anomaly detection symbolic time series analysis, they were able to 

extract the nonlinear characteristics of the acoustic and CH* chemiluminescence time 

series. A more generalized form of this technique was introduced by Sarkar et al. (2012).   
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In summary, all the above studies indicate oscillations observed on approaching blowout 

has complex dynamics and simple descriptions based on loss of static stability and 

Damköhler correlations may not be adequate to describe this phenomenon. However, 

there have been only very few studies that explored these nonlinear dynamics leading to 

lean blowout and characterized them.  

1.2  Historic overview: Thermoacoustic instability 

1.2.1  Traditional approaches 

The occurrence of self-sustained large amplitude pressure oscillations in a combustor 

produced due to the coupling between the unsteady flame and the acoustic field of the 

confindment is known as thermoacoustic instability (McManus et al. 1993). When the 

unsteady heat release fluctuation is in phase with the acoustic pressure fluctuation, 

acoustic energy is produced inside the combustor (Rayleigh 1857). This cause growth of 

pressure oscillations which saturates into a limit cycle oscillation as the nonlinearities of 

the system becomes significant (Dowling 1997).  

At the onset of thermoacoustic instability, the otherwise „stable‟ combustion system 

becomes unstable exhibiting periodic oscillations. In this context, the onset of 

thermoacoustic instability was seen as loss of dynamic stability of the combustor. A 

significant amount of past research is directed towards establishing models for the 

thermoacoustic system based on linear flame transfer functions coupled with the acoustic 

field of the combustor and determining the growth rates by calculating the eigenvalues 

through a linear stability analysis (Huber & Polifke 2009a, b).  The eigenvalues of the 

system are considered to indicate the stability of the system. However, it is observed that 
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a finite amplitude disturbance can cause a linearly stable thermoacoustic system to 

undergo „triggering‟ and exhibit limit cycle behavior. Such a behavior indicates the 

necessity to model the nonlinear nature of the combustion process (Zinn & Lieuwen 

2005).  

Early research on thermoacoustic instability considered that it is the nonlinearities in the 

gas dynamic process that lead to thermoacoustic instability (Culick 1970,1976a, b, 1988, 

1994). Culick and coworkers considered the acoustic field of a combustor to be nonlinear 

and derived models for thermoacoustic instability based on this assumption. However, 

the research by Sterling (1993) suggested that acoustic oscillations need not be nonlinear 

and that it is the nonlinearities in the flame response that cause triggering of 

thermoacoustic instabilities. This was further substantiated by Dowling (1997), Peracchio 

& Proscia (1999) and Lieuwen (2002) who pointed out that in most of the studies 

involving combustors that exhibit thermoacoustic instability, the acoustic pressure is less 

than 5% of the mean pressure and hence the nonlinearities in acoustic waves are not 

significant. Further, it was shown that for lean premixed combustors, the nonlinearities in 

flame response is very significant (Lieuwen, 2004; Preetham and Lieuwen, 2004, 2005; 

Hosseini and Lawn, 2005).  

The response of a turbulent flame to perturbations and its tendency to cause 

thermoacoustic instability in a combustor depends upon various factors that influence the 

combustion. In a gas turbine engine, combustion process is characterized by various time 

scales such as the atomization and evaporation time scale of the fuel, convection time 

scales, mixing time scales, chemical time scales and the acoustic time scales. In a 

simplified sense, parity between these timescales can induce thermoacoustic instability 
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(Polifke 2004). Further, the coherent structures in the reactive flow formed due to the 

characteristics of the flame holding devices or the geometry of the combustor can interact 

with the flame causing heat release rate fluctuations resulting in thermoacoustic 

instability (Zinn & Lieuwen 2005). Unsteady combustion usually produces entropy 

waves in the flow field. These entropy waves when accelerated through the combustor 

exit or the turbine entrance can generate acoustic waves (otherwise known as indirect 

combustion noise) that travel upstream and affect the flame dynamics. Such interaction 

coupled with the acoustic field of the combustor is known to effect thermoacoustic 

instability (Marble & Candel, 1977; Bake et al. 2009; Goh & Morgans, 2013). 

Equivalence ratio fluctuations are also known to cause thermoacoustic instability 

(Lieuwen et al. 2001). Thus, thermoacoustic instability can originate as a result of 

interaction between various flow features with the flame characteristics and the acoustic 

field. In almost all cases, this interaction is highly complicated and nonlinear due to the 

interplay of turbulence, the chemistry of the reaction and the non-uniform spatial 

distribution of reacting species within the combustor. The nonlinearities in combustion 

response are consequently an unavoidable aspect that we need to consider while studying 

thermoacoustic instability in gas turbine engines. 

In many experimental and theoretical studies concerning thermoacoustic instabilities, in 

order to avoid the complexities of the combustion process, a Rijke tube (Rijke 1859) with 

a heated wire mesh (heater) is adopted as a prototypical thermoacoustic system. A 

horizontal Rijke tube consists of a heated wire mesh positioned inside a horizontal duct 

through which a flow of air is established (Matveev 2003). At an appropriate position of 

the wire mesh and the air flow rate, the Rijke tube exhibits thermoacoustic instability 
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beyond a critical value of heater power.  Rayleigh (1878) gave the most appropriate 

explanation for the thermoacoustic oscillations in a Rijke tube. Heckl (1985, 1988, 1990), 

through a series of papers applied nonlinear theory to understand the oscillations in a 

Rijke tube. She was able to use a modified version of  King‟s law to model the heat 

release rate from the heated wire mesh, and provide a model to predict the limiting 

amplitude in Rijke tube. She also experimentally studied the nonlinear effects of heat 

release rate in Rijke tube and implemented active control strategies to suppress the 

thermoacoustic oscillations in Rijke tube. Nonlinear nature of oscillations in a Rijke tube 

was further characterized by Matveev and Culick (2003) who observed hysteresis in the 

onset of thermoacoustic instability when heater power was used as a bifurcation 

parameter. It was also observed that the hysteresis width varied with the mass flow rate of 

air.  

In a pioneering study, the non-normal nature of the thermoacoustic system was identified 

by Sujith & co-workers (Balasubramanian & Sujith 2008 a, b). The effect of this 

nonnormal nature on the stability was also investigated (Nagaraja et al. 2009; Mariappan 

& Sujith 2010; Mariappan, Sujith & Schmid 2015; Subramanian & Sujith 2011). It was 

observed that non-normality causes the system to have transient growth in disturbance 

energy which when clubbed with the nonlinearities of the system can introduce 

thermoacoustic instability at those parameter locations which under a classical stability 

analysis is linearly stable. Further, studies by Juniper and co-workers (Juniper, 2011; 

Juniper, 2012; Waugh & Juniper, 2011) focused on the effect of non-normality on 

triggering in thermoacoustic systems.  
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The effect of noise on the stability of a horizontal Rijke tube was investigated by Waugh 

& Juniper (2011). They observed that under the influence of noise, a thermoacoustic 

system could become unstable even in the linearly stable regime. This predictionwas 

validated through experiments by Jagadeesan and Sujith (2013) who showed that 

transition to thermoacoustic instability is possible even when the noise level is 

significantly lower than the triggering amplitude. The effect of noise on the hysteresis 

characteristics of a horizontal Rijke tube was studied by Gopalakrishnan and Sujith 

(2015), both experimentally and theoretically. They observed that the width of the 

bistable region reduced as the noise intensity was increased. In the presence of high-

intensity noise, the bistable region was completely suppressed.  

The presence of such nonlinear characteristics of thermoacoustic oscillations even in a 

prototypical system indicates the need for nonlinear analysis to understand 

thermoacoustic instability. Even though a significant portion of the past research focused 

on linear stability analysis and identifying flame transfer functions to characterize 

thermoacoustic instability in different combustors, recently there has been an increased 

focus on the nonlinear dynamics of thermoacoustic oscillations.  

1.2.2  Recent Advances: Dynamical systems approach 

Any system that changes with time is called a dynamical system. Usually, such a system 

can be described through a set of differential equations. Dynamical systems theory is the 

branch of mathematics that describes the behavior of a dynamical system. Especially, the 

tools from dynamical systems theory help characterize the long-term qualitative behavior 

of the dynamical system even when you do not have access to all the state variables of a 

system. This is especially useful when we have to characterize the dynamics of a 
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thermoacoustic system since in almost all practical scenarios, during experiments, we can 

only measure the pressure fluctuations inside the combustor. In this section we will see a 

brief overview of various studies that used dynamical systems approach to study the 

nonlinear characteristics of thermoacoustic instability. 

Using numerical continuation methods, Jahnke and Culick (1993) suggested that a 

thermoacoustic system can not only exhibit simple limit cycle oscillations but also could 

undergo a pitchfork and torus bifurcation and exhibit quasiperiodic oscillations. The 

quasiperiodic oscillation is characterized by the presence of two incommensurate 

dominant frequencies and their multiples and thus is not periodic. The possibility of 

chaotic oscillations was identified by Sterling (1993) and Lei & Turan (2009) by using 

numerical bifurcation analysis on models for premixed combustors. In experiments with 

lean gas turbine combustors, the chaotic dynamics of  heat release rate oscillation was 

observed by Fichera et al. (2001).  

Recently, numerical continuation was used to investigate the bifurcation to 

thermoacoustic instability for a horizontal Rijke tube (Subramanian, 2011). They 

observed interesting dynamical behavior such as co-existing multiple attractors, 

quasiperiodic behavior and period doubling route to chaos. They further employed 

similar analysis for a model for a ducted laminar premixed flame and obtained analogous 

results (Subramanian & Sujith, 2011). 

In experiments, Kabiraj et al. (2012a, b, c,) and Kabiraj & Sujith (2012) established 

routes to chaos in thermoacoustic system through bifurcation studies. In a ducted laminar 

premixed laminar combustor, they observed that apart from limit cycle oscillations 
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thermoacoustic systems exhibited various complex dynamic states such as intermittency, 

frequency locked and chaotic states. The different dynamic states were characterized 

using phase space reconstruction, recurrence plots and bifurcation diagrams. The role of 

flame dynamics in generation of such dynamic states was investigated by Vishnu et al. 

(2015). Kabiraj et al. (2012a, b, c,) and Kabiraj & Sujith (2012) also observed both the 

Ruelle-Takens and the frequency locking quasi-periodic route to chaos in their 

experiments. Later, detailed numerical investigations confirmed these findings 

(Kashinath et al., 2013; Kashinath & Juniper 2013; Orchini et al., 2015; Kashinath et al., 

2015). 

Studying the dynamics of the onset of thermoacoustic instability, Nair et al. (2013) 

suggested that the low amplitude aperiodic combustion noise from a turbulent combustor 

is chaotic and described the transition from combustion noise to thermoacoustic 

oscillations as a transition from chaos to order. Tony et al. (2015) through surrogate 

analysis confirmed that combustion noise is deterministic and hence chaotic. Nair et al. 

(2014) also observed that the transition region is characterized by intermittent oscillations 

where the system switches from low amplitude chaotic oscillations to high amplitude 

periodic oscillations. Nair et al. (2014) was able to quantitatively characterize the 

intermittency in the time series of acoustic pressure and was able to device a precursor to 

an impending thermoacoustic instability using recurrence quantification analysis (RQA). 

A detailed description of RQA is given in Chapter 3. Later, Pawar et al. (2015) used 

RQA to characterize the dynamics of a laboratory spray combustor. They observed that 

transition to thermoacoustic instability happened through a regime of intermittency and 
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that the intermittency is possibly of type II suggesting that the underlying bifurcation 

responsible for the intermittency is subcritical Hopf bifurcation.   

The above observations exhibit the complex nature of oscillations in a combustor during 

different dynamic regimes. Especially, the chaotic nature of the oscillations during 

combustion noise is the result of underlying turbulent fluctuations in the flow field of the 

combustor. Already, it is established that turbulent flows have a multifractal scaling 

behavior (Sreenivasan & Meneveau 1986) arising from the underlying multiplicative 

process of Richardson‟s energy cascade (Richardson 1922). Systems that exhibit 

multifractal behavior are better studied in the framework of complex systems theory. 

1.2.3 Recent  advances: Complex system approach 

Systems composing of large number of interacting units are called a complex systems. 

The interaction between the units result in an aggregate behavior that is nonlinear. 

Further, the system self-organizes under the influence of external force to exhibit a 

collective behavior and such a collective behavior cannot be inferred from the behavior 

of the individual elements of the complex system. A turbulent combustor could be 

considered as a complex system. It composes of various interacting units, the collection 

of reactive fluid parcels confined within the combustor, whose interaction is governed by 

various factors such as molecular mixing, turbulent transport (which has a wide range of 

scales), the complex chemistry of the reactions and the acoustic and hydrodynamics 

fields. At different dynamic conditions, the combustors exhibit various nonlinear 

behavior ranging from chaotic oscillations during combustion noise to ordered limit cycle 

oscillations during thermoacoustic instability and intermittency during the transition 

regime from combustion noise to thermoacoustic instability. These dynamics are the 
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result of the reactive flow self-organizing itself into various dynamic behavior as the flow 

conditions (equivalence ratio in our case) are varied.  

Adopting a complex system framework, and performing fluctuation analysis of the time 

series of acoustic pressure from the combustor, Nair and Sujith (2014) showed that the 

“combustion noise” generated by a flame in a confined environment has multifractal 

characteristics and is not mere stochastic fluctuations. Thus, they showed that the „noise‟, 

which in general is either filtered out or treated as stochastic background in traditional 

analysis and modeling of combustion dynamics, does contain important information 

about the dynamical state of the system. Further, they also suggested that the „noise‟ 

might be a direct consequence of inherent complexity of turbulent combustion dynamics 

and hence the separation of the measurements into a signal and noise may lead to loss of 

valuable information.  

They observed that as the system transitioned from combustion noise to thermoacoustic 

instability the multifractal spectrum width reduced and at thermoacoustic instability, the 

multifractal spectrum shrunk to a single point. Considering this, Nair and Sujith (2014) 

described onset of thermoacoustic instability as loss of multifractality. They were also 

able to suggest Hurst exponent, a measure of fractal dimension of the time series as a 

precursor to an impending thermoacoustic instability. They reported that Hurst exponent 

was able to predict the impending instability much before compared to Prms which is 

traditionally used as an indicator to the onset of thermoacoustic instability. 

Another approach to study a complex system is by constructing the corresponding 

complex network and studying its topological charecteristics. Using visibility algorithm, 
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Murugesan & Sujith (2015) constructed complex networks corresponding to the pressure 

fluctuations inside the combustor. They were able to show that combustion noise can be 

topologically represented as a scale-free network. Thus, they suggested that the transition 

to combustion instability is a transition from a scale-free network to a regular network. 

They were also able to show that network parameters such a clustering coefficient and 

characteristic path length could be used as viable precursors to onset of thermoacoustic 

instability. 

It is observed that despite the differences in the components that constitute the complex 

systems, they often exhibit similar dynamic behavior. This is an interesting aspect since 

we see that the transition to various oscillatory instabilities involving turbulent flow have 

similar dynamic characteristics. Systems that exhibit aero-elastic instability, aero-acoustic 

instability, surge etc., exhibit intermittency en route to the corresponding oscillatory 

instabilitiy. It is also observed that all the precursors that are useful for predicting 

thermoacoustic instability are viable precursors to predict any one of these oscillatory 

instabilities. 

1.3  Dynamics of oscillation prior to blowout: Lacuna  

Even though, recently there have been many detailed studies of complex dynamics during 

transition from combustion noise to thermoacoustic instability, there have been very few 

studies that studied the complex nature of oscillations prior to lean blowout. Recent 

studies focusing on nonlinear dynamics of combustors show that transition to both 

thermoacoustic oscillations and blowout exhibit dynamically rich behavior. Kabiraj and 

Sujith (2012), discovered intermittent dynamics in a thermoacoustic system with laminar 
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premixed combustion. They identified that prior to blowout, the thermoacoustic system 

exhibited intermittency, where the system switched from low amplitude periodic 

fluctuations to high amplitude chaotic fluctuations. From the analysis of pressure 

fluctuations in a combustor with turbulent flame, Gotoda et al. (2012) established that the 

phase space corresponding to combustion oscillations prior to blowout exhibited 

multifractal characteristics. They also evaluated the degree of multifractality in terms of 

the equivalence ratio of combustion. They further emphasized that a multifractal analysis 

is indeed necessary to understand the nonlinear dynamics associated with these 

oscillations and that simple measures such as the divergence of the phase space 

trajectories could not capture the rich dynamics at the blowout limit. In another recent 

study, Gotoda et al. (2014) described that the translation error, which quantifies the 

degree of parallelism of trajectories in the phase space, can be used as a control variable 

to detect lean blowout. Further, Domen et al. (2015) suggested that permutation entropy, 

quantifying the rank order pattern of components in phase space vectors constructed from 

the short time-series data of pressure fluctuations, can also be used as a control variable 

to prevent LBO. All these studies, point to the nonlinear nature and complexity of 

combustion dynamics prior to blowout. 

Traditionally, blowout is described as loss of static stability of the combustor. 

Considering the complex nature of dynamics at the transition to blowout, it seems that the 

mere description of blowout as loss of static stability of the flame is inadequate. Further, 

it is evident from prior research (Nair & Sujith, 2014) that even the so-called stable 

dynamics in the context of stability analysis (i.e., combustion noise) is highly complex. In 

the context of onset of thermoacoustic oscillations, Nair et al. (2014) addressed this 
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problem by adopting a multifractal description of combustion noise and describing the 

onset of thermoacoustic instability as a loss of multifractality. This description gives a 

clearer definition to the stability margin for the onset of thermoacoustic instability in 

turbulent combustor while being able to accommodate the complex dynamics seen prior 

to the onset of thermoacoustic instability. Further, they were able to provide a novel 

precursor, the Hurst exponent (a measure indicative of the fractal nature of a time series) 

to detect the onset of an impending thermoacoustic instability. Considering these aspects, 

we attempt to address following four issues in this thesis. 

1. The complexity in scaling characteristics of the pressure oscillations from 

combustion noise to thermoacoustic instability was studied by Nair & Sujith 

(2014). Further, the  phase space corresponding to the pressure oscillations prior to 

blowout is found to exhibit multifractal scaling behavior (Gotoda 2012).  A 

detailed characterization of the scaling behavior of the oscillations during the 

transition from stable combustion to blowout needs to be performed. 

2. Thermoacoustic system exhibits intermittency prior to lean blowout (Nair & Sujith 

2015). A detailed characterization of this intermittency needs to be performed. 

Recurrence quantification analysis of intermittent oscillations in the transition 

regime from combustion noise to thermoacoustic instability provided viable 

precursors to onset of thermoacoustic instability. Similar precursors can be sought 

out for lean blowout. 

3. Even though there is difference in the underlying physics of two complex systems, 

they can have similar collective behavior. For example, intermittency is observed 

prior to the onset of various oscillatory instabilities that involve turbulent flow 
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such as thermoacoustic instability in a combustor, aeroacoustic instability in a 

whistle, aero elastic instability of a structural component etc. Clearly, the 

underlying physics that governs the interaction between the different subsystems 

in each case is vastly different. However, the emergent or collective behavior is 

similar. We observe that the combustor exhibits intermittency both prior to 

thermoacoustic instability and prior to blowout. However, it is clear that flame 

dynamics in both cases cannot be similar since the flame becomes more and more 

unstable as we approach blowout. Hence, the intermittency prior to thermoacoustic 

instability and that prior to blowout needs to be compared and contrasted.  

4. There have been various models that describe blowout in a combustor. Even 

though many of these models are successful in identifying the stability margins for 

blowout, there are no low order models that can capture the dynamics of the 

oscillations prior to lean blowout. A model that considers the turbulent flame as a 

collection of flamlets interacting with each other embodies the philosophy of 

complex nature of the combustor in its core and may be able to capture the 

dynamics close to blowout. 

1.4  Objectives of this thesis 

The primary objective of the present work is to understand the complex dynamics that a 

bluff body stabilized turbulent combustor exhibits prior to lean blowout and compare the 

transition to blowout with the transition to thermoacoustic instability. Further the study 

also aims to provide precursors to an impending blowout in a combustor. The specific 

objectives are: 
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1. To provide a unified framework that describes both transitions to blowout and 

thermoacoustic instability. 

2. Characterize the intermittency prior to blowout to obtain viable precursors to an 

impending blowout. 

3. Compare and contrast the intermittency prior to thermoacoustic instability and 

blowout.  

4. Develop a low-order model that can capture the dynamics of a turbulent 

combustor prior to lean blowout. 

1.5  Overview of the thesis 

We conducted experiments on a laboratory scale dump combustor with a bluff body as 

flame stabilizing mechanism to pursue the objectives detailed in §1.2. Measurements of 

pressure and chemiluminescence intensity were used to characterize the dynamics of the 

combustor. This was to ensure that the precursors to blowout that we may obtain from 

this study will be useful in practical combustors where the types of obtainable 

measurements useful for diagnosing the dynamic stability are mostly restricted to the 

pressure fluctuations inside the combustor. We further use tools from dynamical systems 

theory and complex systems theory to characterize these oscillations and to obtain 

precursors to an impending blowout. We further compare the dynamics during the 

transition to blowout with the dynamics during the transition to thermoacoustic instability 

using recurrence plots. Further, the corresponding flame dynamics were compared using 

high-speed Mie scattering images. Finally, a low order model that can mimic the complex 

characteristics of the chemiluminescence fluctuations close to blowout is suggested.  



 24 

The rest of the thesis is laid out as follows. Chapter 2 gives a detailed description of the 

experimental setup and the measurement techniques used for this study. In Chapter 3, 

the scaling characteristics of the pressure and chemiluminesence fluctuation are 

investigated. We use multifractal detrended fluctuation analysis (MFDFA) to achieve 

this. We show that while we approach thermoacoustic instability, the multifractal 

spectrum width reduces to zero and as blowout is approached, multifractal spectrum 

width increases. This indicates that we can have a unifying description to both blowout 

and thermoacoustic instability where the onset of thermoacoustic instability can be 

considered as loss of multifractality and the approach to blowout as an increase in 

multifractal spectrum width. Further, we also show that Hurst exponent can be used as a 

precursor to an impending blowout.   

In Chapter 4, we study the dynamic characteristics of oscillations during the transition 

from stable combustion to lean blowout using recurrence quantification analysis (RQA). 

We show that various recurrence parameters such as trapping time, Shannon entropy of 

the lines parallel to the diagonal and recurrence rate increases as we approach an 

impending blowout owing to the increased aperiodicity of the oscillations close to 

blowout and hence can serve as precursors to an impending blowout. We will further 

show that a method of recurrence quantification analysis that does not involve phase 

space reconstruction and analyzes the recurrence of the value of the state variable in time 

is effective at prognosis of dynamic transitions in a turbulent combustor. Since such a 

method is computationally less expensive, it can be adopted for online diagnostics of 

thermoacoustic instability and blowout in a turbulent combustor. 
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Chapter 5 gives a comparison of intermittent states that are observed prior to the 

occurrence of thermoacoustic instability and that is observed prior to lean blowout. Using 

recurrence plots, we observe that both intermittencies are possibly of type II and are 

hence dynamically very similar. However, high-speed Mie scattering experiments show 

that the flame dynamics corresponding to either intermittency is different due to the 

difference in the flame stabilization during both dynamic regimes. We also note that the 

flame dynamics very close to blowout is largely affected by the intermittent formation of 

flame holes making the pressure oscillations just before blowout to be highly aperiodic. 

In Chapter 6, we suggest that flame dynamics close to blowout can be modeled as a 

problem of population dynamics of flamelets in the reaction zone. The turbulent flame is 

considered as a collection of flamelets interacting with each other and the unburned gas 

in the reaction field. A flamelet is born when a parcel of unburned gas is surrounded by a 

flamelet. The flamelet extinguishes or dies when all the fuel inside the parcel burns. 

Blowout in such a context is a situation when the flamelets become extinct in the reaction 

field, and the combustion ceases to continue. We introduce a model based on population 

dynamics of flamelets that mimic the flame dynamics at the lean limit. Finally, the 

conclusions derived from this thesis are summarized in Chapter 7. 
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CHAPTER 2 

Experimental setup and methods 

Experiments described in this thesis were conducted in a laboratory scale backward 

facing step combustor with a bluff body used as the flame stabilizing mechanism. 

Primarily, the unsteady pressure fluctuations and the chemiluminescence fluctuations 

inside the combustor were measured. The experimental setup had optical access to the 

combustion chamber which enabled performance of Mie scattering experiments to study 

the flame dynamics at different dynamic states of the combustor. 

2.1  Experimental Setup 

This test rig, christened TARA (ThermoAcoustic Rig for Axial instabilities) was 

previously used by Nair and Sujith (2014). The combustion chamber is a square duct with 

a cross-section of 90 × 90 mm
2
. The combustion chamber is divided into multiple 

sections. The first section is attached to the dump plane and has quatz window to enable 

optical acess. The length of the combustor can be varied by adding or removing sections 

from the combustor. The total length of the combustor can be 70 cm, 100cm or 140 cm. 

A sparkplug mounted at the dump plane, is used for ignition. The fuel used here is LPG 

(60% Butane and 40% Propane). The fuel is injected 120 mm upstream of the bluff body. 

Air is partially premixed with the fuel before the mixture enters the combustion chamber. 

A flame arrester is provided 50 mm upstream the dump plane which ensures that the 

flame does not flash back into the settling chamber.  
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The bluff body used for flame stabilization is a circular disc of thickness 10 mm and 

diameter 47 mm. Within the combustor, bluff body is positioned 50 mm from the dump 

plane. The first section of the combustor is equipped with quartz windows (90 mm   140 

mm) to enable optical access to the combustion zone. The tail end of the combustor is 

connected to a decoupler of size 1 m   0.5 m   0.5 m. The decoupler is provided to 

reduce the radiation of acoustic energy from the combustor to the surroundings. 

 

 

 

 

Figure 2.1:  The schematic of the lab scale combustor used for this study. A pressure 

transducer is used to measure the pressure fluctuations in the system. The 

flame stabilizing mechanism is a circular bluff body. The length of the 

combustion chamber can be changed by adding more number of sections in 

the combustor. For this study, the length was fixed at 1400 mm. The design 

of this combustor was adapted from Komarek & Polifke (2012) 
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2.2 Measurements and Instrumentation 

The experimental setup is equipped with various measurement units and controllers in 

order to conduct experiments and enable measurements. The mass flow rates of the fuel 

and air is controlled during experiments in order to vary the equivalence ratio at which 

the combustion is carried out. The acoustic pressure and CH* chemiluminesence 

fluctuations inside the combustor are measured at various experimental condition. High 

speed Mie scattering images were used to study the flame dynamics during different 

dynamic regimes of the combustor. 

2.2.1 Mass flow controllers 

The mass flow rates of fuel and air supplied to the combustor were controlled using a 

mass flow controllers (Alicat Scientific, MCR Series) with solenoid valves. Air flow rate 

was controlled with a mass flow controller which supported a maximum flow rate of 

4000 SLPM. The mass flow controller used for fuel had maximum flow rate of 100 

SLPM. During Mie scattering experiments, a part of the air flow rate was bypassed 

through a 100 SLPM mass flow controller to a Laskin nozzle. This air is bubbled through 

the olive oil bath inside the Laskin nozzle to make a mixture of air and suspended olive 

oil droplets. This mixture is then injected back into the plenum chamber where it gets 

mixed with the rest of the air flow. Thus the air fuel mixture that enters the combustion 

chamber is seeded with olive oil droplets. The mass flow controllers have an uncertainity 

of ± (0.8% of reading + 0.2% of full scale). In this study, we have represented the 

variation of various parameters with equivalence ratio of the combustion mixture. 

Equivalence ratio is estimated as              ̇   ̇           ̇    ̇               . 

The uncertainty in the estimated equivalence ratio is ± 0.02.   
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2.2.2 Unsteady pressure  

Unsteady pressure fluctuations inside the combustor were measured using piezoelectric 

(PCB103B02 uncertainty ± 0.15 Pa) transducer. Even though the sensor had a metallic 

housing, the maximum operating temperature of the sensor was 121
o
C. Hence specially 

made pressure ports were used to mount transducer on to the combustor walls. The 

pressure ports had Teflon adaptors on to which the pressure transducer was connected. 

The pressure ports were connected to semi-infinite tubes to prevent acoustic resonance 

within the pressure ports. It was observed that phase correction needed for this type of 

arrangement of pressure ports is less than 2
0
.  Even though the combustor had provision 

to measure pressure at various locations along its length, all the measurements reported in 

this thesis are from a pressure port located 5 cm  away from the dump plane. This 

location is very close to the  acoustically closed end of the combustor  (dump plane) and 

hence is closest to a pressure antinode for all the acoustic modes of the combustor.  

2.2.3 CH* Chemiluminescence  

Chemiluminescence measurements were performed using a photomultiplier tube (PMT, 

Hamamatsu H10722-01). The PMT module was placed 50 mm from the quartz window 

normal to the plane of the window (in Fig. 2.1, in the same location as that of high speed 

camera). This position ensured that the photomultiplier captured the dynamics of the 

entire flame.  The PMT module measured the filtered light intensity (narrow band, peak 

at 432 nm, 10 nm FWHM) corresponding to CH* chemiluminescence from the 

combustor. Thus at each instant of time, the PMT module was able to measure the total 

CH* chemiluminesence from the combustor indicating the instantaneous rate of reaction 

or alternatively the heat release rate within the combustor. The collection cone angle for 
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the PMT, for the particular configuration that is used in our experiments is 4.65 

steradians.  

2.2.4  Data Acquisition 

The signals from the pressure transducer and the PMT module were acquired using an A-

D card (NI-6143, 16 bit) at a sampling frequency of 10 kHz, for duration of three 

seconds. Images taken with Phantom V 12.1 camera was directly saved to the memory of 

the camera during the experiments. The maximum storage space available for the camera 

was 32 GB. This restricted the total data accusation time to 25 seconds for a frame rate of 

2000 fps of images of resolution of 1280 × 800 pixels.  

2.2.5  Mie Scattering experiments 

The unsteady fluctuations of the flame drives various dynamic behavior of the 

combustor. Hence, it is important to understand the flame dynaics during different 

dynamic states of the combustor to devise combustion control strategies. To that end, we 

performed high speed Mie scattering experiments. In order to conduct Mie scattering 

experiments, the incoming air was seeded with olive oil droplets of dimension 1-2 

microns. A Lazkin nozzle was used to produce olive oil droplets. During combustion, the 

oil droplets in the air pass through the flame, evaporate and burn. When a laser sheet is 

shone through the combustion zone, the oil droplets present in the flow scatters light (Mie 

scattering). Since the oil droplets are present only before the flame, the boundary of the 

illuminated region in the Mie scattering image approximately represents the flame front 

in the plane of illumination of the laser sheet. The high-speed Mie scattering image thus 

reveal the dynamics of the flame front along a single plane through the combustor as 
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opposed to a high-speed chemiluminescence image which is the line of sight integrated 

image of the three dimensional flame. 

The laser light required for the illumination of the image plane is produced from a high 

speed Nd YLF laser (DM527-50 Nd YLF laser, single cavity, double pulsed). The laser 

produces light of wavelength 527 nm and has a maxim pulse rate of 10 kHz.  The light 

beam produced by the laser is then passed though series of prisms to direct it through the 

8 mm slit in the first section of the combustor. Just before the beam enters the 

combustion chamber, it is passed through a light sheet optics module (TSI instruments, 

610027 ) that converts the laser beam into a light sheet that illuminates a cross section of 

combustor as shown in the Fig. 2.1. The light sheet optics consists of a combination of 

cylindrical and spherical lenses whose relative position can be adjusted to vary the 

thickness of the light sheet. For the present study, the sheet thickness was approximately 

1 mm.  

The laser pulses were synchronized with a Phantom V12.1 camera in order to capture the 

Mie scattering images. Phantom V12.1 camera has the capability to image at a rate of 

6000 fps with a resolution of 1280 × 800 pixels. However, for this study the frame rate 

used is 2000 fps.   
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CHAPTER 3 

Multifractal characteristics of combustion 

dynamics prior to lean blowout 

In classical literature, blowout is described as loss of static stability of the combustion 

system whereas thermoacoustic instability is seen as loss of dynamic stability of the 

system. The description of blowout as loss of static stability stems from the assertion that 

at blowout, the system transitions from a stable reacting state to a non-reacting state 

indicating loss of static stability of the reaction. However, this simple description of 

stability margin is inadequate since recent studies have identified that combustors exhibit 

complex nonlinear behavior prior to blowout. Recently, it was also shown that 

combustion noise that characterizes the regime of stable operation in itself is dynamically 

complex and exhibit multifractal characteristics. Researchers have already described the 

transition from combustion noise to combustion instability as a loss of multifractality 

(Nair & Sujith 2014). In this chapter, we will provide a multifractal description for lean 

blowout in combustors with turbulent flow and thus bring in a unified framework within 

which both thermoacoustic instability and blowout can be described. Further, we will 

introduce a method for predicting blowout based on the multifractal description of 

blowout. However, before venturing into the multifractal analysis, we will first study the 

pressure and chemiluminesence signals that represent the dynamics of the combustor at 

different equivalence ratios.  
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3.1  Route to blowout: pressure and chemiluminescence oscillations  

Dynamics of the turbulent combustor can be characterized by measuring any one of the 

state variable that describes the dynamic state of the system. We choose to use the 

unsteady pressure signal and the CH* chemiluminesence to characterize the dynamics 

since these measurements are also feasible in industrial combustors. We conducted 

experiments at different fuel flow rates (1.04 g/s, 0.93 g/s, 0.81 g/s, 0.56 g/s) each 

corresponding to different power levels of combustor (18.2 kW, 16.25 kW, 14.3 kW and 

9.75 kW respectively). In each experiment, the airflow rate is varied such that the 

equivalence ratio is decreased from 0.98 in discrete steps until the flame in the combustor 

blows out. The range of Reynolds number for the reported experiments is from      

    to          

As the equivalence ratio is varied from near stoichiometry to blowout, we observe that 

pressure and CH* chemiluminescence signals exhibit various different temporal 

modulations. In Fig. 3.1 we illustrate these oscillations present in a bluff body stabilized 

combustor for fuel flow rate of 1.04 g/s. Here, we can identify that the transition from 

stoichiometric combustion to blowout follows the path, low amplitude aperiodic 

oscillations → intermittency → thermoacoustic instability → intermittency → low 

amplitude aperiodic oscillations → blowout.  
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Figure 3.1: Variation of (a) pressure fluctuations and (b) CH* chemiluminescence 

fluctuations at different equivalence ratio conditions for a bluff body 

stabilized combustor operating in turbulent regime. The fuel flow rate is 

1.04 g/s. At an equivalence ratio of 0.95 (Re =         ) the pressure 

and CH* chemiluminescence fluctuations are aperiodic and have of low 

amplitude. At equivalence ratio of 0.80 (Re =         ), we observed 

intermittency in both pressure and chemiluminescence signal. On further 

reduction of equivalence ratio to 0.68 (Re =         ), we observe 

periodic behavior for both pressure and chemiluminescence signals. At 

equivalence ratio of 0.50 (Re =         ), we still observe periodic 

oscillations. However, the amplitude of oscillations is higher than that at 

a) b) 



 35 

equivalence ratio of 0.68. When the equivalence ratio is 0.47 (Re =      

   ), we observe intermittency in both pressure and chemiluminescence 

signals with oscillations switching from high amplitude periodic 

fluctuations to low amplitude aperiodic fluctuations. When the equivalence 

ratio is further reduced, at equivalence ratio of 0.44 (Re =         ), the 

amplitude of periodic content in the oscillation reduces. When the 

equivalence ratio is 0.29 (Re =         ), the pressure and 

chemiluminescence oscillations are aperiodic and have very low amplitude. 

At equivalence ratio of 0.95, we observe that the pressure fluctuations have low 

amplitude and are aperiodic. Similarly the corresponding CH* chemiluminescence 

fluctuations are also aperiodic and has low amplitude. At equivalence ratio of 0.80, we 

observe some periodic part in the time series alternating with aperiodic oscillations. This 

state is referred to as intermittency in dynamical systems theory. The existence of such 

intermittent dynamics in the transition region from combustion noise to instability has 

been reported by Nair et al. (2014). When the equivalence ratio is reduced to 0.68, we 

start observing periodic fluctuations in both pressure and chemiluminescence signal. On 

further reduction of equivalence ratio, the amplitude of the periodic fluctuations (both 

chemiluminescence and pressure signals) increases. We can observe this by comparing 

pressure and chemiluminescence signals corresponding to equivalence ratios of 0.68 and 

0.50. The amplitude of periodic fluctuations is higher for the case with lower equivalence 

ratio. At equivalence ratio of 0.47, we start observing intermittency again. Here, the 

pressure signal has bursts of high amplitude periodic fluctuations followed by low 

amplitude aperiodic fluctuations. A similar intermittent behavior is observed for 

chemiluminescence fluctuations as well. The intermittent behavior in chemiluminescence 

signal suggests that at this dynamic regime, the flame fluctuates periodically for a short 
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period of time and then oscillates in an aperiodic manner for a few acoustic cycles. This 

switch in dynamic behavior is repeated in an apparently random manner. On further 

reduction of equivalence ratio, the amplitude of the periodic part of the intermittent 

oscillations starts to decrease. This change can be seen comparing the signals 

corresponding to equivalence ratios 0.47 and 0.44. In the case of equivalence ratio of 

0.44, the periodic bursts in the signal have much smaller amplitude compared to the 

signals corresponding to equivalence ratio of 0.47. As we reduce the equivalence ratio 

further, the system exhibits low amplitude aperiodic oscillations in both pressure and 

chemiluminescence signals.  

In Fig 3.2 we can see the power spectra (FFT) corresponding to the time series of 

pressure and chemiluminesence fluctuations illustrated in Fig. 3.1. We observe that as the 

instability is approached (Fig. 3.2, Eq. Ratio = 0.68 and 0.50), the FFT corresponding to 

both chemiluminesence and pressure fluctuations show peak at a single frequency close 

to 120 Hz. This frequency varies slightly as the equivalence ratio is changed. This 

variation can be attributed to variation in the flame shape and flame dynamics at different 

equivalence ratios leading to variation in local acoustic impedance and speed of sound 

along the length of the combustor. A detailed flame analysis is required to gain thorough 

understanding about this observation. Such a study is out of the scope of the present 

work. As the equivalence ratio is further reduced, the amplitude of the peak reduces (Fig. 

3.2, Eq. Ratio = 0.47). Close to blowout, the power spectrum does not contain any 

significant peaks.  
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Figure 3.2: a) FFT‟s corresponding to that of pressure fluctuations in Fig. 3.1.a. b) FFT‟s 

corresponding to chemiluminesence fluctuations in Fig. 3.1.b. We observe 

that in both pressure and chemiluminesence time series, as we approach 

instability, there is growth of oscillations at single frequency around 120 Hz 

(slight variations according to equivalence ratio). However, as we approach 

blowout, the oscillations at the dominant frequency dies down.  
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Analyzing the power spectra of the pressure and chemiluminesence fluctuations, we were 

not able to obtain any significant understandings regarding the complex dynamics 

exhibited by the pressure and chemiluminesence fluctuations. In the next section, we try 

to understand the complex behaviors of pressure and chemiluminescence signals detailed 

in this section by studying the variation of the fractal characteristics of both 

chemiluminescence and pressure signals.  

3.2  Scaling behavior of the pressure and chemiluminescence signals  

In order to understand the scaling characteristic of the fluctuations in pressure and 

chemiluminescence signals, we analyze the fractal characteristics of corresponding time 

series. Fractals are geometric objects that exhibit self-similarity at different scales. As we 

zoom into a fractal, we can see similar structures emerging again and again at different 

levels of zoom. Due to this property of fractals, measures such as area and length of a 

fractal are dependent upon the scale of measurement. For example, if we were to measure 

the length of a curve which is a fractal using a ruler, the measured length of the curve 

follows an inverse power law with the length of the ruler used for measurement. 

Alternatively, a log - log plot of the measured length of the curve as a function of the 

ruler length is a straight line with a negative slope. The power law exponent (the slope of 

the line in the log - log plot) is termed the fractal dimension  . Euclidean objects have an 

integer fractal dimension equal to the physical dimension of the object. In contrast, 

fractals have a non-integer fractal dimension.  

A similar concept can be used to characterize a fractal time series, where self-similarity is 

observed in various timescales. For a fractal time series     ,               is also a 
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signal with same statistics (West et al., 2003). Here,   is the Hurst exponent, a measure 

of the fractal dimension ( ) of the time series (Hurst, 1951). The Hurst exponent   can 

be related to the fractal dimension   of the time series as      . The algorithms that 

estimate the Hurst exponent from a time series data utilizes this scaling relationship to 

derive the estimates. In practical situations, the scales present in a system have both upper 

and lower bounds that are dependent upon the characteristics of the system. Further, the 

signals might also exhibit complex scaling behavior where the scaling factor is a function 

of the amplitude of fluctuations. Such time series are called multifractal time series and 

cannot be described using single Hurst exponent (Mandelbrot, 1999). Hence, we need to 

define generalized Hurst exponents in order to describe their scaling behavior. 

A practical method that can be used to estimate the generalized Hurst exponents called 

detrended fluctuation analysis (DFA) was introduced by Kantelhatrdt et al. (2002). These 

generalized exponents indicate the scaling behavior for the central moments of the time 

series appropriately scaled for various orders (both negative and positive). For example, 

the scaling of the standard deviation with time interval gives the Hurst exponent   . For a 

monofractal signal, the generalized Hurst exponents (    have the same value for 

different  , whereas for a multifractal signal, the generalized Hurst exponents (    have 

different values for different  . In DFA, we represent this variation in the generalized 

Hurst exponents through a Legendre transformation. Under the transformation, the 

variation in generalized Hurst exponent at different orders is represented as a spectrum of 

singularities      where   is the conjugate variable corresponding to  .  The width of the 

singularity spectrum gives the degree of multifractality in the signal.  
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In this work, we use MFDFA to study the multifractal characteristics of the pressure time 

series. However, the multifractal characteristics of the reconstructed phase space can also 

be analyzed as shown by Gotoda and coworkers (2012). They were able to identify the 

capacity dimension of the phase space by analyzing the multifractal spectrum 

corresponding to the phase space attractor. However, from an online detection and 

control point of view, MFDFA is superior since the length of the time series and the 

computational time required for the analysis is much lesser for MFDFA. This is due to 

the fact that we avoid phase space reconstruction while performing MFDFA. One 

drawback of using MFDFA is that we will not be able to identify the attractor 

characteristics (such as capacity dimension of the attractor) using such an analysis. 

However, this does not hinder our purpose of predicting an impending blowout. The main 

analysis presented in this chapter is based on MFDFA. Nevertheless, for the 

completeness of the study, in Appendix A, we compare the multifractal characteristics of 

phase space attractors representing combustion noise and a state prior to blowout. 

Figure 3.3a shows the variation of the Hurst exponent (  , estimated from the pressure 

time series) with equivalence ratio as we approach blowout. The Hurst exponent for this 

study is estimated from the time series segments ranging from roughly 2 to 4 acoustic 

cycles. With this choice of range of segment length, we can ensure that we identify the 

transition of the signal from aperiodic to periodic nature (Nair & Sujith 2014). If we 

include segments of length less than 1 acoustic cycle, we will be unable to capture the 

periodicity at the onset of instability. However, for reliable results, guideline says that the 

lower bound for the segment length should be 2 acoustic cycles (Ihlen 2012, Nair & 

Sujith 2014). Also, if we were to include segments longer than 4 acoustic cycles, the 
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fluctuations will be averaged out and we will lose the important information about the 

scaling characteristics of the signal at faster time scales. From previous studies, it has 

been observed that a range of scales of 2 to 4 acoustic cycles is optimal for our analysis 

(Nair & Sujith 2014). The time series used for the analysis is 3s (30000 data points) long. 

Note that for all the different mass flow rates of fuel, the Hurst exponent approaches zero 

at the onset of instability and increases to a higher value at blowout. As we approach 

instability, the pressure signals become intermittent, with the region of periodicity getting 

longer (Nair et al. 2014) and at full blown instability, the pressure signals are sinusoidal 

in nature (Fig. 3.1). Since sinusoidal signals are not fractal and has an integer fractal 

dimension (   ), the Hurst exponent (        ) for pressure signals during 

instability is zero (Nair & Sujith 2014).  

As the equivalence ratio is reduced further from this point, the pressure fluctuation loses 

periodicity and as a result, near blow out, the Hurst exponent increases. This loss of 

periodicity of pressure fluctuations close to blowout could be attributed to the aperiodic 

flame extinction and reignition events that are present close to lean blowout. Such 

aperiodic nature of flame extinction and reignition events prior to blow out was observed 

by Nair (2006) and Muruganandam (2006). They observed that a burst of amplitude in 

the time series of acoustic pressure coincides with the spatially localized reignition 

events. Further, as the combustor approached flame blowout, they observed that the 

frequency of occurrence of aperiodic extinction and reignition events increased. This 

increase in aperiodic fluctuations near to blowout could be the reason why the Hurst 

exponent starts to increase close to blowout.  



 42 

 

 

Figure 3.3: a) Variation in Hurst exponent, H2 estimated based on pressure fluctuations 

with respect to variation in equivalence ratio. b) Variation in Hurst exponent 

estimated based on chemiluminescence with respect to variation in 

equivalence ratio. Note that the Hurst exponent reduces its value as we 

approach the instability and increases as we approach blowout. Hurst 

exponent for this study is estimated from the time series segments ranging 

from roughly 2 to 4 acoustic cycles.  

In a similar manner, Fig. 3.3.b represents the Hurst exponents calculated from CH* 

chemiluminescence intensity measurements measured in sync with the pressure 

measurements used in Fig. 3.3.a. For chemiluminescence measurements, the variations in 

the Hurst exponent with equivalence ratio have characteristics similar to that exhibited by 

the Hurst exponents estimated from unsteady pressure measurements. That is, as we 

reduce the equivalence ratio from one, initially the Hurst exponent reduces due to 
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increasing periodicity of the signals. Further, close to blowout, this periodicity is lost due 

to aperiodic flame fluctuations including extinction and reignition of the flame (Fig. 3.1) 

and hence the Hurst exponent increases. However, in the case of chemiluminescence 

measurements, this increase is more pronounced compared to that exhibited by pressure 

measurements. Close to blowout, the chemiluminescence signals have Hurst exponent 

approaching a value of 0.5.  

However, near the stoichiometric ratio of air fuel mixture, the Hurst exponent obtained 

from chemiluminescence signal has value greater than 0.5, indicating a persistent nature. 

A time series is called persistent if a large value is in general followed by a large value 

and a small value is followed by a small value (Kantelhardt 2011). Persistent signals have 

slow evolving fluctuations (Ihlen 2012). From Fig. 3.4, we can infer that, near 

stoichiometric ratio of air fuel mixture (               ), the chemiluminescence 

signal has fluctuations with longer timescales compared to that of corresponding pressure 

fluctuations. Here it is evident that the chemiluminescence signal has slow varying 

fluctuations compared to pressure fluctuations. It has been experimentally observed that 

flames can drive oscillations at frequencies corresponding to the subharmonics of the 

acoustic frequency (Bellows 2006). Such low frequency oscillations could be the result of 

hydrodynamic fluctuations (Nair & Sujith 2015). As a result of this, for a time series 

segments of length 2-4 acoustic cycles (the highlighted part of Fig. 3.4), the 

chemiluminescence signal exhibit a persistent behavior. Thus the Hurst exponent 

estimated based on chemiluminescence fluctuations for this operational condition has a 

value greater than 0.5.  
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Figure 3.4: Pressure and chemiluminescence fluctuations near stoichiometry 

(             ) for a fuel flow rate 1.04 g/s. Note that for 2 to 4 acoustic 

cycles, the chemiluminescence signal has persistent characteristics. This is 

because, here the timescales associated with flame fluctuations are longer 

than acoustic time scales since flame fluctuations have a frequency 

subharmonic to that of acoustic frequency.  

In the previous paragraphs, we looked at the monofractal characteristics of pressure and 

chemiluminescence time series. Whereas, looking at the previous research (Nair & Sujith 

2014), it is highly possible that the signals have multifractal characteristics. Hence, 

before drawing any conclusions, we need to study the multifractal characteristics of these 

fluctuations, to obtain a better understanding of the scaling characteristics and the 

complex nature of the time series. In the following section we will analyze the 

multifractal characteristics of the unsteady pressure and CH* chemiluminescence time 

series.  
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3.3  Complexity in scaling: Multifractality 

The Hurst exponents plotted in Fig. 3.3 indicates the scaling laws corresponding 

to    (Hurst exponent of order 2).    alone represents only the scaling behavior of the 

standard deviation of the fluctuations in time series. However, as explained in §3.2, a 

time series can exhibit multifractal characteristics where the scaling behavior depends 

upon the amplitude of the fluctuation. In other words, the scaling behavior for central 

moments of fluctuations varies depending upon the order of the central moment. Already, 

it is established that turbulent flows have a multifractal scaling behavior (Sreenivasan 

1986) arising from the underlying multiplicative process of Richardson‟s energy cascade 

(Richardson 1922). Further, we know from recent research that combustion noise is 

amenable to a multifractal description (Nair & Sujith, 2014). Considering these findings, 

in this section, we investigate the multifractal nature of pressure and chemiluminescence 

fluctuations from the bluff body stabilized combustor. In particular, we study the 

multifractal characteristics of the system close to blowout.  

In Fig. 3.5, we can see that when the combustor is operated near stoichiometric air-fuel 

ratio, the multifractal spectrum is broad. This indicates that the signal is multifractal and 

that there is an underlying multiplicative process in the system (Sreenivasan 1991, 

Schertzer & Lovejoy 2011).  As we increase the airflow rate and reach an equivalence 

ratio of 0.50, the combustor exhibits thermoacoustic instability. During thermoacoustic 

instability, both pressure and chemiluminescence signals are periodic and sinusoidal in 

nature. Here, since the fluctuations have sinusoidal nature, the multifractal spectrum 

collapses and the Hurst exponents becomes near zero for all orders.  
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Figure 3.5: The multifractal spectrum for a bluff body combustor for 3 equivalence ratios 

(0.95, 0.50, 0.44) a) estimated based on unsteady pressure time series data, b) 

estimated based on corresponding chemiluminescence time series data. Here, 

the fuel flow rate is 0.93 g/s.  In both cases, initially, the width of the 

multifractal spectrum decreases as we approach instability and becomes close 

to zero at instability. At leaner equivalence ratio, we do not have any 

thermoacoustic instability and we are closer to blowout limit, here the 

multifractal spectrum width increases. The multifractal spectrum is estimated 

for q ranging from -2 to 2. 

a) 

b) 
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However, as we increase the airflow rate further, the equivalence ratio reduces and we 

approach blowout. Prior to blowout, the multifractal spectrum becomes broader as 

compared to the multifractal spectra during thermoacoustic oscillations. This is because 

the signals prior to blowout are intermittent in nature and has a multifractal structure. It is 

to be noted that the multifractal spectrum is relatively narrower for the pressure signal for 

all equivalence ratios as compared to that of corresponding chemiluminescence 

fluctuations. This is due to the preferential amplification of pressure fluctuations close to 

frequency corresponding to the fundamental acoustic frequency of the combustor due to 

which the pressure fluctuations always tend to be relatively more periodic compared to 

the chemiluminescence fluctuation. 

3.4  Approach to blowout in the absence of thermoacoustic instability 

Till now, we discussed the approach to instability for a combustion system which exhibits 

thermoacoustic instability at lean equivalence ratios. Thermoacoustic instability can 

originate when the unsteady heat release rate fluctuations couples with the acoustic field 

in the combustor, establishing a positive feedback between the acoustic and the heat 

release fluctuations. Further, limit cycle oscillations are produced only if the acoustic 

energy added to the system is sufficiently high to balance the losses due to the damping 

present in the system. Hence a combustor might not exhibit thermoacoustic instability 

either when a positive feedback is not established, or when the acoustic energy added to 

the system is not adequate to overcome the acoustic energy lost due to damping in the 

system. Hence, it is important that we study the blowout behavior for such systems as 

well.   
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For this part of the study, we used the same combustor configuration as given in Fig. 2.1. 

We observe that, this configuration of the combustor does not exhibit thermoacoustic 

instability at low fuel flow rates (less than 0.4 g/s) due to reduced amplitude of the heat 

release rate fluctuations. Hence we study the dynamics of pressure and 

chemiluminescence oscillations at a fuel flow rate of 0.37 g/s. The experiment is 

performed by varying the airflow rate from a value corresponding to an equivalence ratio 

of 0.98, in discrete steps, until the flame blowout happens.  

As we reduce the equivalence ratio from 0.98 in steps until blowoff, the pressure and 

CH* chemiluminescence signals exhibit the following dynamics: Low amplitude 

aperiodic oscillations → intermittency → low amplitude aperiodic oscillations → 

blowout. This sequence is illustrated in Fig. 3.6. At equivalence ratio of 0.98, pressure 

and chemiluminescence signals have low amplitude and are aperiodic in nature. When 

the equivalence ratio is 0.67, the pressure and chemiluminescence signals exhibit 

intermittent oscillations where periodic fluctuations alternate with aperiodic fluctuations 

in an apparently random manner. Further, at an equivalence ratio of 0.38, both 

chemiluminescence and pressure fluctuations have low amplitude and are aperiodic.  

Next, we analyze the multifractal characteristics of these oscillations. Figure 3.7 

illustrates the variation of Hurst exponent (  ) with equivalence ratio for a fixed fuel 

flow rate of 0.37g/s. We can see that even in this case where the system is not exhibiting 

instability, the Hurst exponent reduces in value as we approach lean equivalence ratios. 

At lean equivalence ratio, unsteadiness in the flame causes the heat release rate to 

fluctuate. As these fluctuations are confined within an acoustic resonator (the combustor), 

the resonator preferentially amplifies the fluctuations at frequencies close to its natural 



 49 

frequencies (Chiu & Summerfield 1974, Strahle 1978, Hegde, Reuter & Zinn 1987). 

However, since the fuel flow rate is low, the unsteady heat release rate is not adequate to 

drive the system to sustained limit cycle oscillation. Nevertheless, as indicated before, at 

lean conditions, the signals exhibit intermittency where the signal switches from periodic 

to aperiodic fluctuations in an apparently random manner (Fig. 3.6b). As a result of 

intermittent oscillations, there is an increased periodicity in the signals at lean 

equivalence ratios compared to that near stoichiometric equivalence ratios. However, 

since the system does not transition to full-blown instability, the Hurst exponent 

calculated from both pressure and chemiluminescence fluctuations decreases to a value 

close to 0.2 as opposed to a value near zero in a condition where the system exhibits full-

blown instability. Further, near to blowout, the pressure and chemiluminescence 

fluctuations lose their periodic nature (Fig. 3.7) due to aperiodic flame extinction and 

reignition resulting in an increase in Hurst exponent.   

Another important aspect to be noted here is that the Hurst exponent estimated using both 

pressure and chemiluminescence time series has a value above 0.5 for equivalence ratios 

near to stoichiometry and near to blowout. As mentioned before, in this study, Hurst 

exponent is estimated from the time series segments ranging from roughly 2 to 4 acoustic 

cycles. This implies that if we have a time series with dominant frequency much less than 

the acoustic frequency, the signal will largely have persistent characteristics for 2 to 4 

acoustic cycles. 
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Figure 3.6: The time series and corresponding power spectra for unsteady pressure and 

CH* chemiluminescence fluctuations for equivalence ratios of a) 0.95 (Re 

=         ) b) (0.67 Re =         ) and c) 0.38 (Re =         ). 

Note that the frequency corresponding to the acoustic mode (fundamental 

frequency) of the combustor is around 102.2 Hz. Near stoichiometry and near 

to blowout, both pressure and CH* chemiluminescence fluctuations does not 

have a major frequency component near the acoustic mode of the combustor. 

However, in between, at equivalence ratio of 0.67, the pressure and CH* 

chemiluminescence fluctuations have a frequency component at the acoustic 

mode of the combustor. However, the dominant frequency is a subharmonic 

(51.0 Hz) of the frequency corresponding to the acoustic mode of the 

combustor (102.2 Hz). Further, pressure and chemiluminescence signals 

exhibit intermittency at equivalence ratio of 0.67.  The bin size in calculating 

FFT was 0.3 Hz, and the time series used had 30000 data points.  
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Figure 3.7: Variation of Hurst exponent with equivalence ratio. Here we can notice that 

even though the system does not transition to instability, the Hurst exponent 

(  , estimated based on both pressure and chemiluminescence signals for 

time series segments ranging from 2 to 4 acoustic cycles) reduces as we 

approach lean equivalence ratios and further increases close to blowout. 

Further, it should be noted that the Hurst exponents have value greater than 

0.5 near stoichiometric equivalence ratios indicating that for 2 to 4 acoustic 

cycles both pressure and chemiluminescence signals have persistent 

behavior.   

The power spectrum corresponding to pressure and CH* chemiluminescence oscillations 

measured during near stoichiometric equivalence ratio combustion has a shallow peak at 

a frequency corresponding to the subharmonic of the acoustic frequency (Fig. 6a). The 

presence of this dominant low frequency (much lower compared to the acoustic 

frequency) component in the signal causes the estimated Hurst exponent to have a value 

greater than 0.5. The physical reason for presence of this subharmonic frequency requires 
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further understanding of the flow physics and the flame dynamics at this experimental 

condition and hence is beyond the scope of the present work. At equivalence ratio of 

0.67, the oscillations exhibit frequency component corresponding to the acoustic mode of 

the combustor. However, even in this case, the dominant frequency is the subharmonic 

(51 Hz) of the frequency of acoustic mode (102.2 Hz) (Bellows 2006, Moeck 2009).  

Figure 3.8 illustrates the variation in multifractal characteristics as we approach blowout. 

Here the multifractal spectrum does not shrink to a point as seen in Fig. 3.5. However, the 

spectrum width initially decreases as we reduce the equivalence ratio and increases close 

to blowout. This initial decrease can be attributed to the increase in periodicity of the time 

series at lean equivalence ratios, due to the appearance of intermittent periodic 

oscillations at lean conditions (Fig. 3.6b). Further, the preferential amplification of the 

pressure fluctuations at frequencies close to the natural frequency of the combustor leads 

to an increased periodicity in the acoustic signals as compared to that of the 

chemiluminescence signals. As a result, the multifractal spectrum estimated from the 

acoustic signals are relatively narrower as compared to that estimated from 

chemiluminescence signals for all equivalence ratios (Fig. 3.8).  

From the analysis presented in this section, it is clear that even when the system does not 

transition to full blown instability, through the presence of intermittency, the system 

dynamics are affected by the acoustic scales at the lean conditions. Since prior to 

blowout, we observe intermittency in the time series (Fig. 3.6b), it is advisable to include 

the acoustic feedback mechanisms in models that predict blowout. Thus, while modeling 

the dynamics close to blowout, we need to consider the acoustic characteristics of the 

confinement (the combustor) to be able to capture the intermittent dynamics prior to 
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blowout. Further, including the acoustic field in the model may be critical for getting 

accurate estimates for the stability margin for lean blowout.  

 

Figure 3.8: The multifractal spectrum for a bluff body combustor for 3 equivalence ratios 

(0.95, 0.52, 0.35) a) estimated based on unsteady pressure time series data, 

b) estimated based on corresponding chemiluminescence time series data. 

Here the fuel flow rate is 0.93 g/s.  In both cases, initially, the multifractal 

spectrum width decreases as the equivalence ratio decreases. However, 

closer to blowout limit, the multifractal spectrum width increases. The 

multifractal spectrum is estimated for q ranging from -2 to 2.  

a) 

b) 
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Further, considering that blowout is indicated by an increase in Hurst exponent (in 

conjunction with a decrease in equivalence ratio) irrespective of whether or not the 

combustor exhibits instability, we suggest that the Hurst exponent could be used as a 

precursor to detect an impending blowout (Unni, Nair & Sujith 2014). Since Nair and 

Sujith (2014) has already shown that Hurst exponent can be used as a precursor to 

instability (Hurst exponent approaching a value close to zero is indicative of onset of 

instability), we conclude that Hurst exponent can be used as the single precursor which 

could detect both an impending blowout and an impending thermoacoustic instability. 

3.5  Multifractal nature of phase space 

In previous section, we used Multifractal detrended fluctuation analysis (MFDFA) to 

analyze the fractal nature of pressure and chemiluminescence fluctuations. However, 

analyzing the fractal nature of the attractors corresponding to the pressure fluctuations 

could also give some insights into the structure of phase space attractor corresponding to 

the dynamics. In this appendix, we will compare the multifractal spectrum corresponding 

to the phase space attractors reconstructed from a pressure time series obtained prior to 

blowout (Eq. Ratio 0.27, in Fig 3.1) and combustion noise close to stoichiometric 

combustion (Eq. Ratio 0.95, in Fig. 3.1).  

We use the method detailed by Harikrishnan et al. (2008) to obtain the full multifractal 

spectrum representing the phase space attractor. We observe that the multifractal 

spectrum corresponding to either state is similar, suggesting that the multifractal 

characteristics are similar for both states. Thus this indicates that multifractal spectrum 
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characteristics alone cannot distinguish between combustion noise and oscillations prior 

to blowout. 

 

Figure 3.9: The multifractal spectrum for combustion noise (Eq. Ratio 0.95, in Fig.3.1) 

and a state prior to blowout (Eq. Ratio 0.27, in Fig. 3.1). We can see that 

both spectrums are similar indicating that phase space attractor for both 

combustion noise and the state prior to blowout have similar multifractal 

characteristics. Here the time series were embedded in 3 dimensional phase 

space prior to the multifractal analysis. 

We chose MFDFA over this method to analyze the multifractal characteristics since 

MFDFA is faster in terms of computation and can work with much shorter time series 

(details explained in § 3.2).  Further, another aspect that need to be highlighted here is 

that the phase space corresponding to the attractor has high dimension close to blowout 

and during combustion instability. Hence, analyzing the multifractality by reconstructing 

a phase space having lower dimension (3 in this case, also in Gotoda et al. (2012)) is 

disputable. However, embedding the time series in a high dimensional phase space 
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increases the complexity in computation of the multifractal spectrum and hence makes 

this method unsuitable for any online precursor detection system. 

 

3.5. Concluding remarks  

In this chapter, we investigated the multifractal characteristics of CH* 

chemiluminescence fluctuations and pressure fluctuations measured from a turbulent 

combustor. It was observed that when transition to blowout happens through 

thermoacoustic instability, the Hurst exponent (estimated both from CH* 

chemiluminescence signals and pressure signals) initially approaches close to zero at 

instability and further increases near blowout. Also, the multifractal spectrum (estimated 

both from CH* chemiluminescence signals and pressure signals) that is wide at near-

stoichiometric combustion, shrinks to a point at instability and broadens close to blowout. 

Further, even in an alternative scenario when the transition from stoichiometric 

combustion to blowout occurred with combustor not exhibiting thermoacoustic 

instability, we observed that the Hurst exponent (estimated both from CH* 

chemiluminescence signals and pressure signals) initially decreases and then increases 

close to blowout. However, in such a situation, the Hurst exponent does not reduce to a 

value close to zero. In a similar manner, here the multifractal spectrum width (estimated 

both from CH* chemiluminescence signals and pressure signals) reduces initially and 

then increases close to blowout. However, it does not shrink to a point as in the former 

case. The presence of intermittency prior to blowout in either case was suggested as the 

cause for these observed behaviors. The multifractal nature of the pressure and CH* 

chemiluminesence signals prior to blowout suggests the complexity in the scaling 
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behavior of these time series. Considering this complexity in dynamics prior to blowout, 

we provide a framework based on the multifractal characteristics of pressure and 

chemiluminescence fluctuations describing blowout as a dynamic instability. Further, 

within this framework, we saw that when an increase in Hurst exponent is observed in 

conjunction with a decrease in equivalence ratio, we can identify that we are approaching 

an impending blowout. Thus, with this study, we were able to suggest a unified 

framework based on multifractality, within which we can analyze dynamics of both 

combustion instability and blowout.    
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CHAPTER 4 

    Dynamic characteristics of oscillations leading 

to lean blowout 

Pressure and chemiluminesence fluctuations exhibit complex scaling behavior prior to an 

impending blowout. In previous chapter, we systematically characterized this scaling 

behavior. In this chapter, we study the various dynamics exhibited by a turbulent 

combustor as we start from stable combustion at stoichiometric equivalence ratio and 

approach lean blowout by reducing the equivalence ratio in discrete steps. We use 

recurrence plots and recurrence quantification analysis to classify different dynamic 

regimes and thereby characterize the path to blowout. We also show that the parameters 

used for recurrence quantification can further be used as precursors to blowout. In this 

chapter, as in chapter 3, we present two different paths to blowout depending upon the 

power level of the combustor. At higher power levels (high fuel flow rate), as we lower 

equivalence ratio by increasing the air flow rate, the combustor exhibits thermoacoustic 

instability prior to flame blowout. In contrast, when the power level is low (low fuel flow 

rate), as the equivalence ratio is lowered by increasing the air flow rate, the combustor 

exhibits no thermoacoustic instability prior to flame blowout.  

After identifying the path to blowout, we then proceed to identify the type of 

intermittency present prior to blowout. In the parlance of dynamical system theory, 

intermittency is a dynamic state where the system switches between a chaotic attractor to 

a periodic attractor or between two chaotic attractors (Strogatz 2001). In the case of 
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turbulent combustors, as mentioned before, the observed intermittency is a switch 

between aperiodic low amplitude fluctuations and periodic high amplitude fluctuations. 

In general, intermittency is observed in a dynamic system close to a bifurcation point.  

The type of bifurcation characterizes the nature of intermittent dynamics. In the context 

of transition from a laminar state to a turbulent state, Pomeau and Manneville (1980) 

classified intermittency into 3 types based on the underlying bifurcation in the system. In 

this classification, an intermittent state could be Type I, Type II and Type III, depending 

upon the corresponding bifurcation being saddle node, subcritical-Hopf or inverse period 

doubling. They also detailed the characteristic features of each type of intermittency. 

Identifying these features, one can identify the type of intermittency from a time series 

obtained from experiments. With the knowledge of the type of intermittency, one can 

validate models that describe the transition to blowout by comparing the types of 

intermittency obtained from high fidelity models and that obtained in the experiments. 

Using the statistics of intermittency, we can determine the proximity the transition. The 

layout of the rest of the chapter is as follows. In § 4.1 we describe the essential 

mathematical tools required for recurrence quantification analysis. Section 4.2 details the 

results obtained from this study. The major conclusions from the study are given in § 4.3. 

4.1  Recurrence Quantification Analysis  

Time series of state variables measured from combustors exhibit various nonlinear 

characteristics. Recurrence quantification analysis (RQA) is a powerful tool that can be 

used to analyze such nonlinear time series. In RQA, we quantify the recurrent behavior of 

the state of a dynamical system in its phase space (Marwan et al., 2002). By identifying 

the recurrent behavior, one can analyze the dynamic state of the system. 
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The first step in RQA is constructing the phase space corresponding to the dynamical 

state of the system. Phase space is a multidimensional space where all possible states of 

the system are represented (Takens 1985). The state point, representative of a particular 

state of the system evolves in the phase space as time progresses. A phase space has 

  dimensions if   dynamic variables are required to completely describe the state of a 

system. However, often in our experiments we have access only to one (or a few) state 

space variables that is measured. In this particular study, we measure the unsteady 

pressure within the combustor.  

For such a situation, Takens (1985) introduced a method of reconstructing the 

mathematical phase space from a single measured time series,     . This method of 

reconstructing the phase space is known as delay-embedding (Abarbanel et al. 1993). In 

order to reconstruct the phase space, we need to obtain two important parameters: the 

embedding dimension     and an optimal time delay    . Optimal time delay     is used 

to construct d time delayed vectors,                                 each 

representative of one of the state variable of the system. The embedding dimension is 

representative of the dimension of the phase space corresponding to the dynamics of the 

system. Using the d time delayed vectors, we construct the d-dimensional phase space. In 

this work, we choose the delay corresponding to the first minima of the average mutual 

information of      as the optimal time delay (Abarbanel et al. 1993) and the embedding 

dimension     is obtained using the false nearest neighbor method (Abarbanel et al. 

1993, Cao 1997). This method of nonlinear time series analysis was introduced in 

thermoacoustics by Kabiraj et al. in their study of route to chaos for a thermoacoustic 

system (Kabiraj et al. 2010).  
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Once the phase space is reconstructed, we will construct a recurrence plot (RP) 

corresponding to the dynamics of the system. Recurrence plot is a plot between time     

and time     . It indicates those times      for which the state point visits roughly the same 

volume of the phase space as it was at a particular time    . Let    be the position of the 

state point in the phase space at      instant of time; i.e.     Then, we can construct a 

recurrence matrix (   ) such that, 

     (  ‖     ‖)                                                                           

This implies, if    lies inside the   dimensional sphere of radius   centered around   ,     

is one. Otherwise,     is zero. Recurrence plot is a graphical representation of the 

recurrence matrix (   ) where a value of one is represented in the graph by a black dot 

and a value of zero is represented by a white dot. Depending upon the recurrent 

characteristics of the system, a recurrence plot exhibits different spatial patterns. For 

instance, a periodic signal has an RP with equally separated parallel lines. If the RP has 

isolated points and short diagonal lines, the corresponding state does not have any long 

time recurrent behavior and is either a chaotic state or a random state. Once the 

recurrence plot is constructed, we perform recurrence quantification analysis by defining 

meaningful statistical measures representative of the distribution of black points in the 

recurrence plot. In this chapter, we use three different measures to analyze the recurrence 

characteristics; recurrence rate, entropy of diagonal lines and trapping time. Recurrence 

rate (  ) measures the density of black points in the recurrence plot and hence is given 

by,  
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Entropy (    ) represents the Shannon entropy of the distribution of diagonal line 

lengths (    ) in the recurrence plot and is given by, 
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 Trapping time (τ) is the average length of vertical lines (here, we normalize it with the 

maximum possible length of a vertical line) and is given by,  

  
∑       

      

 ∑      
      

 

We can compare different dynamical states by comparing the recurrence plots or the 

statistical quantities (RR, ENTR and τ) estimated from them. However, the characteristics 

of the recurrence plots and the recurrence quantities would depend upon the manner in 

which the value of   is chosen to construct the recurrence plots corresponding to different 

dynamic states. Here, for recurrence quantification analysis (RQA), the value of   is 

chosen to be fixed for different dynamical states and is equal to the size of the phase 

space attractor corresponding to the aperiodic pressure fluctuations during stoichiometric 

combustion. The details of the logic behind this choice of    for RQA is given in §IV. 

However, with such a choice of   , during combustion at stoichiometric equivalence ratio, 

the state points corresponding to all times would be within the  -dimensional sphere of 

radius   centered around a state point corresponding to any particular time instant.  In 

other words, in the phase space any state point is within the neighborhood of any other 
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state points. This implies, the corresponding recurrence plot will be entirely filled with 

black points. Thus any information about the structure of the attractor is lost. The only 

information captured is that the entire attractor can be confined within a  -dimensional 

sphere of radius,  . 

On the other hand, in order to visualize the structure of attractor using RPs, the value of  

   is chosen to be equal to     , where   is the standard deviation of all the distances 

between different state points in the phase space. This ensures that the neighborhood 

defined by the  -dimensional sphere of radius   contains only part of the phase space 

attractor and hence the information about the structure of the attractor is preserved in the 

corresponding RP.  

4.2   Recurrence characteristics of pressure fluctuations 

The experiments described in this chapter were conducted at two different fuel flow rates 1.04 g/s 

(28 SLPM) and 0.56 g/s (10 SLPM). For each fuel flow rate, the air flow rate is varied from a 

value corresponding to stoichiometric equivalence ratio to leaner equivalence ratios in discrete 

steps until the flame blows out. At each equivalence ratio, we measured the acoustic pressure 

within the combustor. As the equivalence ratio is varied, we observed various temporal patterns 

in the time series of unsteady pressure. In this chapter, we analyze these patterns and the 

corresponding dynamics using recurrence plots (RP), in order to identify various dynamics of the 

pressure oscillations as we transition from stoichiometric combustion to blowout in turbulent 

combustors. We observe that when the fuel flow rate is high, as the equivalence ratio is reduced 

by increasing the air flow rate, the system exhibits thermoacoustic instability prior to blowout. In 

contrast, at low fuel flow rate, as we approach lean equivalence ratio, no thermoacoustic 

instability is encountered prior to flame blowout.   
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4.2.1  Approach to blowout: High fuel flow rate 

In Fig. 4.1 we plot the time series of unsteady pressure acquired at different equivalence 

ratios for the case of high (1.04 g/s or 28 SLPM) fuel flow rate. Near stoichiometry, the 

pressure oscillations are aperiodic and have low amplitude (Fig. 4.1.a). The 

corresponding recurrence plot has a grainy structure (Fig. 4.2.a) indicating that the 

system does not exhibit any recurrent behavior (recurrence parameters used are   =      

and     for Fig. 4.2). 

When the equivalence ratio is reduced to 0.77, the oscillations exhibit intermittent 

behavior where high amplitude periodic oscillations alternate between low amplitude 

aperiodic oscillations in an apparently random manner (Fig. 4.1.b). The corresponding 

recurrence plot exhibits rectangular black patches (Fig. 4.2.b) of apparently random 

dimensions and intervals. These rectangular patches indicate that the state is trapped in a 

small volume of the phase space for a long period of time, randomly leaves this volume 

and again comes back to the same part of the attractor. When the state point escapes from 

this part of the attractor, it reaches a periodic orbit. This is indicated by the lines parallel 

to the diagonal line of the recurrence plot extending from the black rectangular patches 

present in the recurrence plot (Fig. 4.2.f).  Such a trajectory of the state point is called a 

homoclinic orbit. On further reduction of equivalence ratio to 0.53, we observe 

thermoacoustic instability where the unsteady pressure fluctuations have high amplitude 

and are periodic (Fig. 4.2.c). In the RP, the periodicity of pressure fluctuations during 

thermoacoustic instability is captured by the lines parallel to the diagonal line of RP (Fig. 

4.2.c). 
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Figure 4.1: Time series of unsteady pressure obtained at different equivalence ratios. a) 

Near stoichiometric combustion (equivalence ratio of 0.95), the oscillations 

are aperiodic with low amplitude. b) At an equivalence ratio of 0.77, we 

observe intermittency prior to instability. c) When the equivalence ratio is 

0.53, we observe instability. d) Further, at equivalence ratio of 0.47 we 

observe intermittency prior to blowout. e) When the equivalence ratio is 

0.32, we have low amplitude aperiodic oscillations. On further reduction in 

equivalence ratio, the flame blows out. 

Once the equivalence ratio is reduced to 0.47, the system starts to exhibit intermittency 

prior to blowout (Fig. 4.1.d). Here, high amplitude periodic fluctuations alternate between 
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low amplitude aperiodic oscillations. The corresponding recurrence plots exhibit 

rectangular patches indicating intermittency (Fig. 4.2.d). On further reduction of 

equivalence ratio, the amplitude of the periodic part of the intermittent oscillations 

reduces (Fig. 4.1.e).  However, the RP still has rectangular black patches (Fig. 4.2.e). On 

further reduction of equivalence ratio, the flame blows out. 

Figure 4.3.a represents the variation of the root mean square of the acoustic pressure 

(    ) with equivalence ratio. Here the fuel flow rate is 1.04 g/s.  We observe that the 

     increases as we approach thermoacoustic instability and then decreases as we 

approach blowout. Figures 4.3.b, 4.3.c, 4.3.d represent the variation of different 

recurrence quantities with equivalence ratio.  As explained in § 4.1, in order to perform 

RQA (  =     Pa,    ), for all the parameter locations, we have chosen the value of   

to be constant and roughly equal to the size of the phase space attractor corresponding to 

the aperiodic oscillations during stable combustion at stoichiometric equivalence ratios. 

By choosing   in this manner, we will be able to quantify the intermittent oscillations (in 

other words, the dynamics of the state point in the homoclinic orbit) and hence predict 

dynamic transitions in the combustor.  

The recurrence rate (RR), the density of black points in the RP represents the recurrent 

behavior of the system. During, the occurrence of combustion noise, the amplitude of 

oscillations is low and hence the phase space is confined to a smaller volume compared 

to that during thermoacoustic instability. Since the radius of the  -ball used to construct 

RP is constant for different parameter locations, during low amplitude aperiodic 

oscillations, the system is highly recurrent (most of the phase space is covered by the  -

ball). Whereas, during thermoacoustic instability, the trajectory of state point covers a  
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Figure 4.2: Recurrence plots corresponding to pressure fluctuations at different 

equivalence ratios presented in figure 1. a) When the equivalence ratio is 

0.95, the recurrence plot shows grainy structure indicating aperiodic 

oscillations. b) At an equivalence ratio of 0.77, we observe intermittency 

where RP shows black rectangular patches. c) The recurrence plot 

corresponding to periodic oscillations at an equivalence ratio of 0.53. Note 

that the RP has lines parallel to the main diagonal. d) RP corresponding to 

intermittency prior to blowout. e) Recurrence plot of aperiodic oscillations 

prior to blowout. f) Zoomed in image of RP during intermittency (figure 3e). 

Note that the black patch represent the aperiodic fluctuations and the parallel 

lines emerging from the black patch represent the periodic motion of state 

point in the phase space.    

larger volume in the phase space and hence is less recurrent. Following the above 

argument, in Fig. 4.3.b we observe that RR reduces as we approach thermoacoustic 

Eq. Ratio = 0.77 Eq. Ratio = 0.95 Eq. Ratio = 0.53 a) 

d) 

b) c) 

Eq. Ratio = 0.47 Eq. Ratio = 0.32 e) f) Eq. Ratio = 0.47  
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instability and increases close to blowout. The increase of RR prior to blowout can be 

attributed to the aperiodicity and low amplitude of the pressure oscillations before 

blowout causing the corresponding attractor to cover less volume in the phase space. 

 

Figure 4.3: Variation in a) Prms, b) recurrence rate (RR), c) entropy (ENTR) and d) 

trapping time (τ) as equivalence ratio is varied from stoichiometry to blowout. 

We can observe that as the system approaches blowout, ENTR, RR and   

decreases initially as we approach periodic oscillations towards zero and 

increases close to blowout. 

Entropy is a measure representing the Shannon entropy of lines parallel to the diagonal of 

an RP. During aperiodic oscillations ENTR is high. During periodic oscillations the RP 

has a regular structure (lines trsaparallel to the diagonal) and hence ENTR is low. Thus in 

Fig. 4c, we can see that ENTR decreases as we approach thermoacoustic instability and 

increases close to blowout. The trapping time ( ) is the average length of vertical lines in 

a) 

c) 

b) 

d) 
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the recurrence plot. A vertical black line in an RP indicates that the state of the system is 

trapped in a small volume of the phase space for a long time. This happens when the 

system exhibits low amplitude chaotic oscillations. Since close to blowout, the dynamics 

is dominated by low amplitude aperiodic oscillations, as the system transits from 

combustion noise to thermoacoustic instability,   initially reduces due to the appearance 

of large amplitude oscillations and increases close to blowout (Fig. 4.3.d) due to the low 

amplitude oscillations.  

4.2.2  Approach to blowout: Low fuel flow rate  

When the fuel flow rate is low (0.56 g/s), the combustor is unable to sustain a full blown 

thermoacoustic instability. In such a case, we do not observe thermoacoustic instability 

before blowout. In Fig. 4.4, we plot the pressure fluctuations at different equivalence 

ratios. In Fig. 6, we present the corresponding recurrence plots (here,   =     , where   

is the standered deviation for the time series and    ). Near stoichiometric equivalence 

ratio, the pressure fluctuations have low amplitude and are aperiodic (Fig. 4.4.a). The 

corresponding recurrence plot has no specific patterns. When the equivalence ratio is 

further reduced, the combustor exhibits intermittency in the pressure fluctuations. Here, 

high amplitude periodic oscillations alternate with low amplitude aperiodic oscillations. 

The corresponding recurrence plots show rectangular black patches. The black patch in 

this recurrence plot represents those times during which the trajectory is trapped within 

the chaotic part of the attractor and the white bands represent the times for which the 

trajectory leaves the chaotic attractor to follow the trajectory corresponding to the 

periodic oscillations. On further reduction of equivalence ratio to 0.35, we have low 
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amplitude aperiodic oscillations. For this case, the corresponding RP is has a grainy 

structure.   

 

Figure 4.4: Time series of unsteady pressure obtained at different equivalence ratios 

when the fuel flow rate is 0.56 g/s. a) Near stoichiometric combustion 

(equivalence ratio of 0.92), the oscillations are aperiodic with low amplitude. 

b) At an equivalence ratio of 0.56, we observe intermittency. c) Further, when 

the equivalence ratio is 0.35, we have low amplitude aperiodic oscillations. On 

further reduction in equivalence ratio, the flame blows out. Note that at this 

fuel flow rate, the system did not exhibit thermoacoustic instability at fuel lean 

operating conditions. 

On performing recurrence quantification analysis (  = 150 Pa and    ), we observe 

that as the equivalence ratio is varied, even in a case where the system does not encounter 

thermoacoustic instability at lean equivalence ratios, the recurrence parameters (RR, 

ENTR,  ) vary in a similar manner as it varied for the case where the system encounters 
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thermoacoustic instability at lean conditions. RR, ENTR and   decreases initially and 

increases close to blowout (Fig. 4.6). However, the reduction in the recurrence measures 

here is less compared to that in Fig. 4.3. In Fig. 4.3.b and 4.3.d, RR and   approach very 

near to zero during thermoacoustic instability, whereas in Fig. 4.6.b and 4.6.d, the 

minimum value of RR is 0.18 and that of   is 0.73.  

 

 

 

 

 

Figure 4.5: Recurrence plots corresponding to pressure fluctuations at different 

equivalence ratios presented in figure 1. a) When the equivalence ratio is 

0.92, the recurrence plot show grainy structure indicating aperiodic 

oscillations. b) At equivalence ratio of 0.56, we observe intermittency where 

RP shows black rectangular patches. c) Recurrence plot corresponding to 

aperiodic oscillations at equivalence ratio 0.35. Note that at this fuel flow 

rate, the system did not exhibit thermoacoustic instability at fuel lean 

operating conditions. 

Analysis of the recurrence of state point in the phase space helps us identify the dynamic 

characteristic of the system and further give precursors to impending transitions in the 

dynamical state. However, since such an analysis involves phase space reconstruction 

prior to recurrence quantification, and hence is rather computationally intensive. Online 

prognosis of dynamic transitions in real engine demands methodologies that are 
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computationally less taxing. Considering this, in next section, we propose adopting a 

methodology of recurrence quantification analysis that does not involve phase space 

reconstruction and is nevertheless capable of predicating an impending blowout and 

thermoacoustic instability.  

 

Figure 4.6: Variation in a) Prms, b) recurrence rate (RR), c) entropy (ENTR) and d) 

trapping time (τ) as equivalence ratio is varied from stoichiometry to 

blowout. We can observe that as the system approaches blowout, ENTR, RR 

and decreases initially and increases close to blowout.  

4.3  Recurrence analysis with no phase space embedding  

The methodology of RQA was first introduced by Iwanski and Bradley (1998). They 

showed that a recurrence plot that is constructed without embedding the time series in a 

d-dimensional phase space is able to capture the dynamic transitions in a system. In this 

case, recurrence is considered to have happened at the point          in the recurrence 

a) 

c) 

b) 

d) 
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plot, if      , the value of the time series at time t, is within the range                

  . That is, equitation 2.1 modifies as, 

     (  |   
    

|)                                                                            

Here, instead of analyzing the structure of the phase space, we look at the patterns in the 

time series. Once the recurrence plot is constructed in this manner, recurrence 

quantification is performed as detailed in §2. The variation of         and   estimated 

from recurrence plots constructed without phase space embedding are given Fig. 9 and 

10. Figure 9 indicates the variation for the case of high fuel flow rate (1.04 g/s,   =     

pa). We can see that trends observed in this case is similar as that of in Fig. 4. As blowout 

is approached both    and    approach 1. Further,      increases close to blowout. We 

also observe that the increasing trends for the parameters   ,   and      starts at 

around same parameter location for both Fig. 4 and 9. We also observe that the method of 

RQA without embedding is similarly effective even in the case of low fuel flow rate (Fig. 

10 where   =     pa).  

Similarities in the trends observed in the RQA of the phase space and of the value of the 

time series is due to the peculiar nature of the phase space attractor during intermittent 

pressure oscillations. During intermittency, the state point remains near to the center of 

the  -dimensional phase space during aperiodic oscillations (i.e., when the value of the 

pressure fluctuations is close to zero) and go away from the center while the pressure 

time series exhibits high amplitude periodic oscillations. When the amplitude of 

oscillation is low and the state point is close to the origin, the probability of recurrence is 

high both in the phase space and in the amplitude of the pressure fluctuations.  
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Figure 4.7: Plot of RR, ENTR and   for RQA performed without embedding the 

dynamics in the phase space. The fuel flow rate here is 1.04 g/s. The system 

encounters thermoacoustic instability at low equivalence ratios as lean 

blowout is approached. We can observe that as the system approaches 

blowout, ENTR, RR and decreases initially as we approach periodic 

oscillations towards zero and increases close to blowout. 

 

Figure 4.8: RQA performed without embedding the dynamics in the phase space. Here 

the fuel flow rate is 0.56 g/s. The system do not encounter thermoacoustic 

instability at low equivalence ratios as lean blowout is approached. We can 

observe that as the system approaches blowout, ENTR, RR and decreases 

initially as we approach periodic oscillations towards zero and increases 

close to blowout. 

On the other hand, when the state point is away from the center of the phase space and 

the pressure fluctuations have high amplitude, the tendency of recurrence is low both in 
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phase space and in the amplitude of pressure fluctuations. Thus, recurrence 

characteristics are similar in both cases. 

4.4  Concluding remarks 

In this chapter, we showed that recurrence quantification can be utilized to characterize 

the intermittent pressure oscillations in a turbulent combustor. Various parameters that 

are estimated from recurrence plots such as trapping time, Shannon entropy of the lines 

parallel to diagonal and recurrence rate exhibit significant variations as we approach an 

impending blowout owing to the increased aperiodicity of the oscillations close to 

blowout and hence can serve as precursors to an impending blowout. We further showed 

that a method of recurrence quantification analysis that doesn‟t involve phase space 

reconstruction and analyzes the recurrence of the value of the state variable in time is 

effective at prognosis of dynamic transitions in a turbulent combustor. Since such a 

method is computationally less expensive, it can be adopted for online diagnostics of 

thermoacoustic instability and blowout in a turbulent combustor. 
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CHAPTER 5 

Flame dynamics during intermittency in a 

turbulent combustor 

Recent studies on combustors with turbulent reactive flow and flame stabilization using 

swirl (Thampi & Sujith, 2015) or bluff body (Nair et al., 2014) show that on approaching 

lean equivalence ratios, the reactive flow system exhibits intermittency presaging the 

onset of thermoacoustic instability. In chapter 3 and 4, it was also seen that as the 

equivalence ratio was further reduced, the system undergoes another bifurcation and 

exhibits intermittency post the occurrence of thermoacoustic instability (Unni & Sujith 

2015, Nair & Sujith 2015). On further reduction in equivalence ratio, the flame blows 

out. Further, statistical measures that quantify intermittency were proposed as precursors 

to impending thermoacoustic instability (Nair et al., 2013). Nevertheless, the similarities 

and differences between these intermittent states prior to and post thermoacoustic 

instability has not been systematically investigated. The primary goal of this chapter is to 

compare and contrast either state both from the perspective of dynamical systems theory, 

and from the point of view of flame dynamics.  

In the context of turbulent flows, intermittency is a well-studied phenomenon that was 

observed from the early research of Batchelor and Townsend (1949). However, different 

types of intermittent behaviors are observed in turbulent flows. The interface between the 

turbulent fluid inside the boundary layer and the irrotational flow outside the boundary 

layer is found to be intermittent. Further, it is known that the dissipative range of 

turbulent cascade exhibits intermittency (Frisch, 1995).  Additionally, the wall boundary 
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layer exhibits intermittency caused by the formation of coherent structures that breaks 

down intermittently, producing bursts of small-scale turbulence (Lumley & Kubo,1985).  

In contrast, the intermittency that we focus on in this chapter is the dynamic state of a 

system with confined turbulent reactive flow that is characterized by bursts of periodic 

pressure oscillations appearing amidst aperiodic pressure fluctuations in an apparently 

random manner (Nair et al., 2014, Nair & Sujith 2013). In the context of the onset of 

thermoacoustic instability, Nair and Sujith (2013) showed that the intermittent dynamics 

prior to thermoacoustic instability corresponds to dynamics in a homoclinic orbit in the 

phase space. Further, Nair and Sujith (2015) attributed aperiodic flame extinction and re-

ignition events as the cause for the presence of the bifurcation that leads to the occurrence 

of intermittency after the occurrence of thermoacoustic instability, before eventually 

reaching blowout. The multifractal characteristics of these oscillations, prior to and post 

thermoacoustic instability, was detailed in chapter 3. We observed that combustion noise 

(pressure oscillations during near stoichiometric combustion) and pressure oscillations 

prior to lean blowout have similar multifractal characteristics. Nevertheless, we did not 

discuss the characteristics of intermittency before the occurrence of thermoacoustic 

instability and the intermittency prior to blowout. In this chapter, we provide a detailed 

comparative analysis of intermittency prior thermoacoustic instability and that prior to 

blowout.  

The presence of intermittency helps us forewarn about the dynamic transitions in a 

turbulent combustor. Hence, understanding the characteristics of intermittency is 

important to improve the forewarning capabilities. There are two specific objectives for 

this study. 1) Compare and contrast the intermittency occurring prior thermoacoustic 
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instability and prior to blowout using unsteady pressure time series measurements. 2) 

Study the flame front dynamics during either state using high speed Mie scattering 

images, acquired simultaneously with unsteady pressure.  

The rest of the chapter is laid out as follows. Section 3 talks about the results and 

discussions. Major conclusions are detailed in §4.  

5.1   Comparison of intermittency: analysis of the pressure fluctuations  

The unsteady pressure inside the combustor was measured at different global equivalence 

ratios (details given in §2). Close to stoichiometric combustion, at a global equivalence 

ratio of 0.98, the pressure oscillation inside the combustor has low amplitude and is 

aperiodic (Fig. 5.1a). As the global equivalence ratio is reduced, we observe intermittent 

oscillations (Eq. Ratio = 0.86, Fig. 5.1b). At a global equivalence ratio of 0.58, we 

observe thermoacoustic instability (Fig. 5.1c). The oscillations during thermoacoustic 

instability has a peak frequency around 248 Hz. On further reduction of global 

equivalence ratio, the system undergoes another bifurcation and at Eq. Ratio = 0.37 and 

we again observe intermittency (Fig. 5.1d). From these experiments, we can observe that 

intermittent oscillations appear both before and after the occurrence of thermoacoustic 

instability. In the rest of this section, we will compare the dynamics of the pressure 

fluctuations observed during these regimes of intermittency prior to and post the 

occurrence of thermoacoustic instability. 
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Figure 5.1: Time series of unsteady pressure obtained at different equivalence ratios. a) 

Near stoichiometric combustion (equivalence ratio of 0.98), the oscillations 

are aperiodic with low amplitude. b) At an equivalence ratio of 0.86, we 

observe intermittency prior to instability. c) When the equivalence ratio is 

0.58, we observe instability. d) Further, at equivalence ratio of 0.37 we 

observe intermittency prior to blowout. Length of combustor for this set of 

experiments is 700 mm. 

The pressure time series, spectrogram (window size of 500 data points (0.05 s), overlap 

400 (0.04 s) data points) and recurrence plots corresponding to intermittency prior to and 

after thermoacoustic instability are presented in Fig. 5.2.  
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Figure 5.2: Time series, spectrogram and the recurrence plot corresponding to the 

intermittent pressure oscillations before and after the occurrence of 

thermoacoustic instability. The recurrence plots with black patches whose 

corners show perforations indicate that both case of intermittency is Type II 

and hence dynamically similar. There are no significant differences 

observed in spectrogram. 
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From the time series, we can observe that during the occurrence of both intermittent 

states, in time, bursts of large amplitude periodic oscillations appear in between the 

aperiodic fluctuations in an apparently random manner. The occurrence of these bursts is 

reflected as the intermittent peaks observed in the spectrogram. The spectrogram 

represents the time varying frequency content in a time series. For the duration of the 

aperiodic fluctuations the spectrogram indicates low amplitude for all the frequencies.  

However, as the bursts of periodic oscillations appear, the amplitude of oscillations 

around 205 Hz increases (peak at 205 Hz, for intermittency prior to thermoacoustic 

instability). Comparing the spectrograms for the intermittent states, it can be observed 

that for intermittency after thermoacoustic instability, the peak frequency (230 Hz) is 

higher than that observed for intermittency prior to thermoacoustic instability. 

Next, we investigate the dynamics by analyzing the corresponding recurrence plots. A 

recurrence plot represents the recurrent behavior of phase space trajectory. A detailed 

study of the recurrence characteristics of the pressure oscillations in a laminar (Kabiraj & 

Sujith, 2012) and turbulent (Gotoda et al., 2014) combustor was previously reported. 

They used recurrence plots to identify different dynamic behaviors exhibited by reactive 

flow systems. The patterns in recurrence plots indicate the dynamic behavior of the 

system. For example, the lines parallel to the diagonal in a recurrence plot represent 

periodic behavior in the phase space. The distance between these parallel lines represents 

the time period associated with the periodic oscillations. The recurrence plots in Fig. 5.2 

have parallel lines interrupted by dark patches. Such a pattern indicates that the 

oscillations are intermittent in nature; i.e. periodic for some time and aperiodic for the 

rest. The dark patches reflect the presence of aperiodic oscillations in the time series. 
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When we zoom in, for both intermittency before and post thermoacoustic instability, we 

see that the black squares along the diagonal of the recurrence plot have perforated upper 

and right edges (Fig. 5.2). Such a pattern in a recurrence plot is suggestive of type II 

intermittency (Klimaszewska & Zebrowski, 2009). Type II intermittency is indicative of 

the approach of the dynamical system to an underlying subcritical Hopf bifurcation 

(Pomeau & Manneville, 1980). There could be other types of intermittencies for a 

dynamical system such as Type I or Type III depending on the underlying bifurcation 

being either a saddle node bifurcation or an inverse period doubling bifurcation. Here, 

since the type of the intermittency is the same for both cases, we can possibly conclude 

that both states exhibit qualitatively similar dynamics. Other than the observed difference 

in the frequency of the periodic part of intermittent oscillations, the recurrence plot and 

spectrogram indicate similar qualitative behavior for intermittent state prior to and post 

thermoacoustic instability, even though the flame dynamics may be different for these 

two situations. In the next section, we will investigate the flame front dynamics during 

either states to gain further insights into the similarities and difference in the intermittent 

dynamics.  

5.2. Comparison of intermittency: analysis of flame dynamics 

Before comparing the flame dynamics during intermittency preceding and post the 

occurrence of thermoacoustic instability, we will first analyze the flame stabilization 

during combustion at Eq. Ratio= 0.98 (i.e. global equivalence ratio close to 

stoichiometric combustion). Fig. 5.3 shows a Mie scattering image that represents a 

typical flame front imaged along a plane passing through the center of the bluff body. 

Note that, here the boundary of the illuminated part of the Mie scattering image indicate 
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the density gradient across the flame and hence represents the flame front (marked by 

yellow dots in Fig. 5.3). We should note that the flame is stabilized along the outer shear 

layer (anchored at point Y, stabilized by the recirculation zone at the dump plane) and the 

inner shear layer (anchored at point X, stabilized by the stagnation point flow behind the 

dump plane). Through extensive experiments on turbulent flames, Shanbhogue et al. 

(2009) showed that the part of the flame close to its root (anchor point) responded the 

most to a periodic forcing. They also showed that the dynamics at the tip of the flame 

contributed mainly to the aperiodicity in the pressure fluctuations. This suggests that, it is 

the stability of the anchor points that determine the periodic flame dynamics and hence 

the dynamics of the combustor during thermoacoustic instability. 

 

 

 

 

 

 

 

 

Figure 5.3: Mie scattering image representing the flame front during stable combustion. 

The flame front is the contour enveloping the illuminated region in the Mie 

scattering image and is shown here as a dotted yellow line. Here, the 

   ̇ 1.04 g/s and the Eq. Ratio  0.98. The flame is anchored at point X 

and Y stabilized by the stagnation point flow in the Region I and  the 

recirculation at dump plane (Region II). 
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During the regime of intermittency prior to the occurrence of thermoacoustic instability, 

the flame is stabilized as shown in Fig. 5.4. Here, the flame switches between two distinct 

behaviors.  

 

Figure 5.4: Flame images during intermittent oscillations prior to thermoacoustic 

instability. During periodic part of intermittency, both outer and inner shear 

layer exhibit periodic fluctuation of the flame front. The green circle marks 

the flame roll-up due to the vortex that is periodically shed from the dump 

plane. The red circle marks the flame fluctuation at the inner shear layer that 

is responsible for the switch from low amplitude aperiodic oscillation to 

high amplitude periodic oscillation  

During the periodic part of pressure oscillations, the part of the flame stabilized along 

both the inner and outer shear layer oscillates in a periodic fashion. The Mie scattering 

images show roll-up in the flame front stabilized along the outer shear layer suggesting 

that ring vortices that emerge from the dump plane perturbs the flame in a periodic 

manner (Fig. 5.4a-i, the roll-up pattern is marked in Fig. 5.4f with a green circle). The 
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presence of such ring vortices during thermoacoustic instability has been reported 

previously (Poinsot et al., 1987). In this study, we observe that such ring vortices are also 

observed during the periodic part of intermittency. However, this periodic roll-up of the 

flame front persists only for a small duration and the flame intermittently switches to the 

alternate flame dynamic configuration that is present during the aperiodic part of the 

pressure fluctuation (Fig. 5.4A-H).  

 

Figure 5.5. Mie scattering images indicating the dynamics of the flame front for different 

phases of the pressure oscillations during thermoacoustic instability. Figures 

5.5a to 5.5i represent the images corresponding to the specific locations in 

one cycle of the periodic pressure oscillation as shown in the pressure time 

series. The green circles mark the rollup of the flame due to the vortex that is 

shed periodically from the dump plane.  

During aperiodic pressure oscillations, the periodic oscillation at the flame root subsides 

and the tip of the flame oscillates in an aperiodic manner. At the aperiodic part of the 

intermittent oscillations, we can observe that a wrinkle formed near the anchor point „X‟ 

convects downstream and grows in amplitude causing a fluctuation to the flame front (the 

wrinkle is marked with red circles in Fig. 5.4) A fluctuation to the flame causes an 

unsteady heat release rate, which, in turn, causes an acoustic perturbation in the reaction 

zone. If this acoustic perturbation is significantly high, it could further enhance the 

fluctuation at the root of the flame by perturbing the shear layer shed from the dump 
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plane (Yokoyama & Kato, 2009). As the feedback from acoustic field increases, the 

strength of the periodic fluctuation increases. The sustained high amplitude oscillations of 

the flame close to the root of the flame during periodic pressure fluctuation can be 

observed from the Mie scattering images (Fig. 5.4a-j).  

During thermoacoustic instability (Fig. 5.5), we can see that a roll-up in the flame front, 

very similar to that we observed during the periodic part of the intermittent oscillations, 

imparts much stronger periodic behavior to the flame front. Here, acoustic pressure peaks 

when the rolled up part of the flame impinges the bluff body (Fig. 5.5g).  

The periodic and aperiodic flame fluctuations during intermittency post thermoacoustic 

instability can be seen in Fig. 5.6. The major difference that needs to be highlighted here 

is that the stability of the flame along the inner shear layer changes. Note that the anchor 

point for the flame along the inner shear layer (represented by „X‟ in Fig. 5.4a) has 

moved from the shaft holding the bluff body to the top of the bluff body in Fig. 5.6a. 

Now, the stagnation point behind the bluff body is no longer able to sustain the flame. 

Hence the flame along the inner shear layer is attached on top of the bluff body. Further, 

during the periodic oscillations, the flame along the inner shear layer, anchored on top of 

the bluff body, no longer exhibits large periodic fluctuations. During the aperiodic part of 

pressure fluctuations, the flame dynamics is aperiodic and most of the flame fluctuation is 

near the flame tip. The periodic part has a higher frequency during the intermittency that 

occurs post of thermoacoustic instability, possibly due to the increased flow velocity 

resulting in the increased frequency of the vortex shedding from the dump plane.  
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Figure 5.6: Mie scattering images that show flame front fluctuations during intermittent 

oscillations post thermoacoustic instability. During the periodic part of 

intermittency, the outer shear layer exhibits periodic fluctuation of the flame 

front (Fig. 5.6a-j). The green circles mark the rollup of the flame due to the 

vortex that is shed periodically from the dump plane.  

During intermittency prior to thermoacoustic instability, the flame is anchored behind the 

bluff body on the shaft holding the bluff body (inner shear layer) and at the dump plane 

(outer shear layer). Here, the flame along the inner shear layer is stabilized due to the 

stagnation point flow behind the bluff body. Whereas, the flame along the outer shear 

layer is stabilized by the recirculation zone at the dump plane. During the periodic part of 

intermittent pressure fluctuations, the flame along the outer and inner shear layer exhibits 

periodic fluctuations characterized by a rolled-up part of the flame front convecting 

towards the bluff body, impinging the bluff body and causing an impulse in heat release. 

We can also observe that during the periodic oscillations, the root of the flame oscillates 

in a periodic manner.   
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During intermittency occurring post thermoacoustic instability, the flame is anchored on 

top of the bluff body (along the inner shear layer) and at the dump plane (outer shear 

layer). The flame along the inner shear layer is no longer stabilized by the stagnation 

point flow behind the bluff body, possibly due to the high strain rates due to the increased 

velocity of the flow at lean equivalence ratios. Similar observations have been made 

recently by Shanbhogue et al. (2016). During periodic part of intermittent pressure 

fluctuations, the flame along the outer shear layer alone exhibits periodic fluctuations and 

the inner shear layer no longer exhibit periodic oscillations (Fig. 5.6a-j).  

Even though we observe that the system exhibits differences in the flame dynamics 

during intermittency prior to and after thermoacoustic instability, both intermittent states 

are of type II and hence have qualitatively similar dynamics, from the perspective of 

dynamical systems theory. 

5.3  Concluding remarks 

In this study, we investigated the pressure oscillations and the flame dynamics of 

intermittency observed prior to and post the occurrence of thermoacoustic instability on 

reduction of equivalence ratio from stoichiometry to fuel lean conditions. From the 

analysis of pressure fluctuations, it was observed that both intermittency prior to and post 

occurrence of thermoacoustic instability are of type II and hence exhibit qualitatively 

similar dynamics. It may be noted that a stochastically driven oscillator may exhibit 

similar dynamics (Noiray & Schuermans, 2013) that cannot be conclusively distinguished 

from a type II intermittency with the proposed method (i.e. recurrence analysis), and 

further studies are required to conclusively establish the dynamic nature of the 
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intermittent oscillations. Further, the flame dynamics during either regimes were studied 

using high speed Mie scattering images acquired simultaneously with the unsteady 

pressure. We observe that during the periodic part of the intermittency, both prior to and 

post the occurrence of thermoacoustic instability, the part of the flame anchored along the 

outer shear layer exhibits periodic roll-up of the flame front, resulting in periodic 

fluctuation in the heat release rate. However, we observe that the flame stabilized along 

the inner shear layer exhibits a different behavior during the intermittency prior to and 

after the occurrence of thermoacoustic instability. During the periodic part of the 

intermittency prior to thermoacoustic instability, the flame along the inner shear layer 

exhibits periodic motion along with the flame along the outer shear layer. Also, the flame 

along the inner shear layer is anchored on top of the shaft holding the bluff body 

stabilized by the stagnation point flow behind the bluff body. In contrast, during 

intermittency occurring post thermoacoustic instability, the stagnation point behind the 

bluff-body loses its ability to stabilize the flame. Hence, the flame is anchored on top of 

the bluff body and is stabilized by the recirculation zone formed due to the bluff body. 

During the periodic part of intermittency, the part of flame stabilized along the outer 

shear layer exhibits periodic fluctuations whereas the part of flame stabilized along the 

inner shear layer does not exhibit periodic oscillations.   
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CHAPTER 6 

Flame blowout: an absorbing phase transition 

In Chapter 5, we discussed the dynamics of the flame during the regime of combustion 

noise, state of intermittency before the occurrence of thermoacoustic instability, state of 

intermittency before flame blowout and also during thermoacoustic instability. We did 

not, however, dwell into the dynamics of flame very close to the flame blowout. Previous 

studies (detailed in next few paragraphs) indicate that the dynamics of a flame very close 

to blowout is complex and is largely dominated by the growth of the intermittently 

formed flame holes. In this chapter, we attempt to develop a low order model that can 

capture these dynamics. Further, we describe the dynamic transition that this model 

undergoes as the system encounters a flame blowout. 

Historically, there have been various attempts to study lean blowout. Early studies by 

Longwell, Frost & Weiss (1953) and Spalding (1955) suggest that the Damkhöler number 

(Da), the ratio of the resident time of the reactants and the reaction time scale is an 

important parameter that determines the LBO margin. It was conjectured that that LBO 

occurs when Da of the reactive flow is lesser than a threshold value. Such a simple 

description, while befitting for the description of LBO behavior of laminar flames, is 

seldom true for the case of a turbulent flame. For a turbulent flame, LBO is described as a 

collective flamelet extinction event (Plee & Mellor 1979; Radhakrishnan, Heywood & 

Tabaczynski 1981) and the ratio of the flow speed to the flame speed is used to 

characterize blowout. When this ratio exceeds one, at critical locations inside the 

combustor, the flame blows out (Chaudhuri et al. 2010). However, this description is 
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highly limited in the practical scenario of near blowoff flames in a highly turbulent flow. 

Here, the local extinction and reignition events are governed by various other factors such 

as highly intermittent local strains rates, flame geometry, mixture fraction fluctuations, 

heat loss from the flames to the wall or to the flow coupled with differential diffusion 

effects, the local boundary conditions and the detailed chemistry of the reaction. The 

interaction effects of the above further add to the complexity of the problem 

This complex interaction between different processes causes a highly unsteady and 

aperiodic behavior of the flame prior to blowout. Muruganandam (2006) and Nair (2006) 

observed that both chemiluminescence and pressure fluctuations close to flame blowout 

exhibits burst like behavior. Gotoda et al. (2012) further observed that these oscillations 

also exhibit multifractal characteristics. The flame dynamics close to blowout was 

investigated by De Zilwa, Uhm & Whitelaw (2000) using high-speed flame images and 

simultaneous pressure fluctuations. They observed that the flame exhibited highly 

unsteady behavior prior to lean blowout. Nair and Lieuwen (2007) showed that the 

approach to blowout is through increased appearance of flame holes in the reactive flow 

field in a random manner. Later, Chaudhari et al. (2010) investigated the interaction 

between flame-fronts and shear layer vortices by performing time-resolved 

chemiluminescence imaging along with simultaneous particle image velocimetry (PIV) 

and OH planar laser-induced fluorescence (PLIF). This study suggested that close to 

blowout, it is the interaction between the shear layer vortices and flame fronts that causes 

the local stretch rates along the flame to exceed the extinction stretch rates leading to the 

local extinction of the flame and thus the production of a flame hole. The flame dynamics 
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in specific combustor configurations and a more general review of the work on blowout 

of bluff body stabilized flames are given by Shanbhogue, Husain & Lieuwen (2009). 

There have been numerous efforts to capture the flame dynamics close to blowout using 

direct numerical simulations (DNS) and large eddy simulations (LES) (Gokulakrishnan et 

al. 2006, Kim et al., 2006.). Similar to many experimental studies (Zhang et al, 2007, 

Driscoll & Rasmussen, 2005), the primary goal for most of these studies were to obtain 

semi-empirical correlations that could identify the LBO margins for specific 

configurations of combustors. While they were largely successful in their pursuit of 

predicting stability margins, few models tried to capture the unsteady dynamics of the 

flame close to blowout.     However, till date there are no lower order models that exist 

that tried to capture the complex dynamics of the flame close to blowout. In this work, we 

try to bridge that gap and introduce a low-order phenomenological model that captures 

the flame dynamics of a turbulent combustor at lean limit. The model considers the flame 

confined in the combustor as a collection of flamelets interacting with each other. This 

interaction between flamelets leads to emergence of various dynamics at different 

dynamic conditions. Thus, this model preserves the main philosophy of this thesis and 

treats the combustor as a complex system where the individual subunits of the system 

interact with each other resulting in complex emerging dynamics.   

6.1  The population dynamics model for flame blowout 

Inside a combustor, the flame exists at those locations in the reactive flow field where 

reactants react to form products. When reactants burn (assuming the fuel is a 

hydrocarbon), they produce hot radicals such as OH which participate in the key chain 
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branching combustion reaction: H + O2 
         
→   OH + O. The flame inside a combustor is 

sustained when the hot radicals formed at a particular instant interact with the unreacted 

air-fuel mixture that enters the combustor at the next instant thus making sure that a chain 

reaction is established inside the combustor. Thus, during stable combustion, there is 

always some amount of hot free radicals inside the combustor. The locations where these 

free radicals are present mark the spatial distribution of the flame inside the combustor. 

The concentration of the free radicals indicates the rate of reaction and hence the heat 

release rate. The experimental techniques (e.g. planar laser induced florescence - PLIF) 

that are used to capture the flame dynamics essentially map the concentration of CH or 

OH free radicals within the flow field. Thus, the flame dynamics in a combustor is in 

essence equivalent to the dynamics of the concentration the free radicals in the reactive 

flow field. In the model, for simplicity, we consider that the flame is comprised of 

multiple flamelet. A gas parcel that contains free radicals or flame is called a flamelet. 

The flame dynamics is the result of the local interaction between these multiple flamelets 

that compose the reaction field. In this narrative of flame dynamics, lean blowout is a 

scenario where the inability of the reactive flow to sustain the chain reaction results in the 

extinction of the population of flamelets in the flow field. Inspired from this connection 

between the flame dynamics and the population dynamics of the flamelets, in this 

chapter, we introduce a population dynamics model that captures the complex dynamics 

that the flame exhibits close to lean blowout.  

The effort to comprehend the dynamics of populations has been underway for more than 

two centuries beginning with the seminal work of Malthus (1798) that suggested that 

population of a society undergoes an exponential growth in time eventually inducing a 
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demand and supply mismatch of resources in the society. This model did not consider the 

effect of finiteness of resources and was soon replaced by the famous logistic model that 

considered population growth to be limited by the carrying capacity of the environment 

(Verhulst, 1838). With further advent of mathematical biology, over the years, more 

sophisticated models started to emerge that would model the spatiotemporal aspects of 

population growth under various constraints imposed by its environment and the rules of 

interaction among the population. Today, population dynamics models are widely used to 

study the dynamics of various natural phenomena such as spread of epidemics (Anderson 

& May, 1981), desertification of forests, extinction of species (Woodroffe & Ginsberg, 

1998), population dynamics of fisheries (Kapur, Troy & Oris, 1997), societal and cultural 

collapse (Russell & Russell, 2000) etc. 

While in each situation, the details of the model vary, the commonality is that, in every 

model, there is interplay between the birth and death process that control the emergent 

global dynamics of the population. When we try to describe the population dynamics in a 

spatially extended system, the effect of spatial distribution in the interaction among the 

population becomes a decisive factor in the birth and death process and hence the 

population dynamics (Karaiva 1990). For example, the spread of an epidemics is at times 

controlled by minimizing the interaction between the infected population with the healthy 

population by spatially quarantining the infected population (Arino et al. 2005).   

In adapting a population dynamics model for describing the dynamics of flame, we 

consider the process of ignition of the reactants as the birth process of a flamelet and the 

process of extinction of a flamelet as equivalent to the death of the flamelet. The ignition 

of an unburned gas parcel in a reactive flow is the result of its interaction with 



 95 

neighboring gas parcels which contain hot free radicals (flamelets). Hence, the spatial 

distribution of the flamelets determines the flame propagation within the reactive field 

and hence controls the combustion dynamics. Considering these aspects, we define a 

cellular automaton (CA) for the population dynamics of flamelets that would mimic the 

flame dynamics inside a combustor. A cellular automaton is a discrete computational 

system that is useful in modeling a complex system. A generic cellular automaton 

consists of regular array of cells (in most cases formed by a regular grid). At each time 

instant of the cellular automaton, each cell can assume any one of the finite number of 

states that are allowed. The states of the cells evolve in parallel at discrete time steps 

according to state update functions or dynamic transition rules. The update rules are a 

function of the state of the cell and its neighborhood. The characteristic feature of cellular 

automata is their ability to display emergent dynamic behavior as the result of the local 

interaction between the states of the multiple cells that they are comprised of. Thus, they 

form an ideal basis for studying complex system behavior. In this chapter we define a 

cellular automaton that mimics the flame dynamics inside a combustor. In defining the 

cellular automaton, we treat the combustor as a complex system in which the emergent 

dynamics of the flame is the result of local interaction between multiple flamelets, the 

unburned reactants and the products of combustion. 

Our primary objective is to model the flame dynamics close to flame blowout. First, a 

few simplifying assumptions are made. We consider the blowout characteristics of two 

different configurations of combustor. A combustor with a simple premixed conical 

flame (Fig. 6.1a) and a combustor with a bluff body stabilized premixed flame (Fig. 

6.1b). The geometries of combustors are shown in the Fig. 6.1. A two-dimensional 
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reaction field is considered for simplicity. It is assumed that the premixed air-fuel mixture 

enters the combustor with a uniform velocity 2U across the inlet for both combustors. 

Both combustors have a width of   . The inlet for the conical flame combustor (Fig. 

6.1a) has a width of       . The bluff body in Fig. 6.1b has a width of       . 

 

Figure 6.1: The schematic of the combustor configuration that is modeled using a 

cellular automata. a) Conical flame. b) Buff body stabilized flame. For 

simplicity, we assume that the premixed air-fuel mixture enters the 

combustor with a uniform velocity 2U across the inlet for both combustors. 

Both combustors have a width of   . The inlet for the conical flame 

combustor (Fig. 6.1a) has a width of       . The bluff body in Fig. 6.1b has 

a width of       . 

To construct cellular automata, first, we divide the reaction field inside the combustors 

into a uniform square grid. Each vertex of the grid represents the state of the flow in that 

spatial location. The states can be, unburned (0), burning (1) or burned (2). In each step 

of cellular automata, the fluid elements at each vertex interact with each other following a 

set of rules. This local interaction between the flowing gas parcels which are unburned, 

burning, or burned leads to the propagation of flame in the flow field. The specific 

characteristics of the interaction between the fluid elements that we need to capture in 

x 

y 

a) b) 
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this model are the localness and the effect of the underlying turbulent flow in the system. 

The rules of cellular automata that define flame propagation are given in Fig. 6.2. In each 

step, a burned site would remain burned and a burning site will become burned. An 

unburned site would burn with a probability P, if there is at least one site in its Moore 

neighborhood (i.e., the eight sites which surround it) which is burning. Here, P is the 

probability of flame propagation. When the probability of flame propagation   reduces, 

the average flame speed reduces. At lean equivalence ratios close to blowout, the flame 

velocity reduces when the equivalence ratio of combustible mixture reduces. Thus, 

reducing P is equivalent to reducing the equivalence ratio of the combustion and 

approaching blowout.  

 

 

 

 

 

Figure 6.2: a) Rules of iteration for the cellular automata  (CA) model. The state of the 

fluid at each vertex can be, unburned  (0),  burning  (1)  or burned  (2). In 

each step, a burned site would remain burned, and a burning site will 

become burned. An unburned site would burn with a probability P, if there is 

at least one site in its Moore neighborhood (i.e., the eight sites which 

surround it) which is burning. Here, P is the probability of flame 

propagation.   

Field of reaction divided 

into a square grid 

Rules of iteration for the 

cellular automata 
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The probability of flame propagation P, can be related to the varying strain rates in a 

turbulent flow. It is known that a flamelet propagates into a neighboring unburned fluid 

parcel, only if the strain rates corresponding to the unburned fluid parcel is less than the 

ignition strain rate (Sign) and the strain rate along the flamelet is less than the extinction 

strain rates (Sext) (Law, 2010). Hence, a flame needn‟t always propagate into a 

surrounding unburned gas parcel. The probability of propagation depends upon the strain 

rates of the flamelet and the surrounding unburned gas parcel. In a combustor, there is a 

non-uniform, turbulent field of strain rate for the reactive flow. In cellular automaton, we 

incorporate the turbulence in the reactive flow field by assuming that there is a time 

varying random field of strain rate in the flow field. For simplicity, we assume the 

random strain rate along the grid points in the field to have the characteristics of white 

noise. The probability associated with flame propagation will depend on the strain rates 

of the unburned fluid parcels surrounding a burning fluid parcel and the strain rate of the 

burning fluid parcel. For premixed combustion, as equivalence ratio is reduced, Sign and 

Sext reduces. This implies, as equivalence ratio is reduced the probability of flame 

propagation, P reduces.  Sign and Sext With this definition P, is also related to the flame 

speed. As P reduces, the flame speed reduces. 

The mean flow of the unreacted mixture is simulated by removing two columns of 

vertices from the right side of the grid representing the reactive field and adding two 

columns of vertices with unburned sites to the right of the grid in each step. This 

essentially, moves the grid representing the reaction field towards left by two columns. 

The mean flow of the unreacted mixture is simulated by removing two columns of 

vertices from the right side of the grid representing the reactive field and adding two 
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columns of vertices with unburned sites to the right of the grid in each step. This mimics 

the outflow of fluid parcels (burned, burning or unburned) from the combustor and the 

influx of the unburned fluid parcels into the combustor. In order to initiate burning and to 

keep the flame anchored at the exit of the burner, burning fluid parcels are added at point 

A and B in every iteration of the cellular automata s. This mimics the outflow of fluid 

parcels (burned, burning or unburned) from the combustor and the influx of the unburned 

fluid parcels into the combustor. In order to initiate burning and to keep the flame 

anchored at the exit of the burner, burning fluid parcels are added at point A and B in 

every iteration of the cellular automata with a probability P (for reducing complexity of 

the model, we take this as equal to the probability of flame propagation) provided; there 

be at least N number of burning parcels in the reactive field. If the number of burning 

fluid parcels in the reactive field goes below  , then the flame is no longer anchored at 

the burner. This corresponds to a situation when the flamelets fail to sustain the chain 

reaction eventually leading to flame blowout. In this work,   is taken to be 3. This 

happens when there is at least one extra burning fluid parcel other than the two added at 

the inlet during every iteration of cellular automata. The value of N determines the value 

of P at which  blowout happens. In experiments, this would correspond to the minimum 

reaction rate in the reaction field to ensure the chain reaction.   

The 2D reaction field is divided into a regular square grid where the side of each grid is 

one unit long. In every iteration of the cellular automata, the grid is moved by two 

columns (a distance of 2 units) of vertices towards left. We consider the corresponding 

flow velocity to be 2U. Whereas, in every iteration, the flame can propagate to its 

immediate Moore neighborhood. In the Moore neighborhood, the neighbors along x and y 
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axis are one unit distance away from the central site, and the neighbors along the 

diagonals are √  unit distance away from the central site.  This means, in every iteration, 

the flame travels √  unit along the diagonal of the square grid and one unit along the x 

and y directions. As a result, the flame velocity is U along the x and y directions of the 

square grid of the cellular automata. Whereas, along the direction parallel to the 

diagonals of the grid, the flame propagates with a velocity of √  . As a result, at 

equilibrium, when       , for CA‟s corresponding to both combustor I and combustor 

II, flame is stabilized at an angle of     to the mean flow (Fig. 6.1). The component of 

mean flow velocity along the diagonals of the square grid is balanced by the flame 

velocity in the same direction. As P reduces, the average flame velocity reduces. Making 

the flame more and more parallel to the flow. 

6.2  The flame dynamics close to lean blowout 

The typical flame configuration observed at various values of P for combustor-I is shown 

in Fig. 6.3 and for combustor-II is shown in Fig. 6.4. Both combustor configurations 

exhibit similar flame dynamics. Reducing the value of P is equivalent to reducing the 

value of equivalence ratio. Here we observe that at lower values of P, flame holes are 

generated. Flame holes are the gaps in the flame front where the flamelets gets 

extinguished. The processes of initiation and recovery of flame holes create unsteadiness 

in the heat release rate. Nair and Lieuwen (2007) observed this phenomena in 

experiments with bluff-body stabilized flames and called it the first stage of blowout. 

They reported that during this stage, even though the flame is unsteady due to the 

formation and recovery of flame holes, the overall position and the qualitative behavior 
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of the flame remains the same. Chaudhuri et al. (2010) showed that during the 1
st
 stage of 

blowout, the flame holes are formed due to the interaction of shear layer vortices with the 

flame front. However, during this stage, the recovery time for a flame hole is small 

enough that it ensures that the flame still remains in varicose mode (symmetrically 

distorted flame). A similar behavior is seen for the flame dynamics observed for P = 0.70, 

P = 0. 50, and P = 0.45 in Fig. 6.3 and Fig. 6.4. Here, the flame is distorted due to the 

formation of flame holes. Nevertheless, the flame holes recover fast enough, ensuring 

that the flame dynamics remain largely symmetric. 

 

Figure 6.3: The typical snapshot of the conical flame for different values of probabilities 

of reignition (P). Note that the length of the flame reduces as value of P is 

reduced. There is growth of flame holes at lower values of P. 
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At lower values of P, we see asymmetric behavior for the flame dynamics (cases of P = 

0.40 and P = 0.37 in Fig. 6.3). This is because the reduced value of P results in larger 

flame holes that take longer time periods to recover. Energy released per unit time 

reduces with formation of flame holes. However, when the recovery of flame holes 

happens, there is a burst of energy that is released. Since the formation of flame holes 

does not happen in a symmetric manner about the axis of the combustor, the bursts of 

energy also happen in an asymmetric manner. Similar asymmetrical behavior of flame is 

also observed in the experiments (Nair, 2006; Chaudhuri et al. 2010).  However, in 

experiments, this asymmetry is enhanced by the formation of vortices along the shear 

layer at locations where the flame hole is formed due to the increased predominance of 

Kelvin-Helmholtz instability at these places. This results in the dominance of absolute 

instability at the locations of flame holes eventually leading to a sinus mode oscillation 

for the flame. This is also seen as the flapping of the flame. 

Very close to blowout, at the final stage, the variation of the chemiluminescence 

fluctuation reduces. In figure 6.3 when P = 0.35, the flame is highly asymmetrical and 

flamelets are scattered along the flow field. The flame becomes columnar and parallel to 

the flow. This is indicative of the strain rates along the flame being close to extinction 

strain rates. In experiments, the formation of columnar flames before blowout was 

observed by Chaudhuri et al. (2010). In the model, as the probability to flame 

propagation reduces, the unburned parcel travels much more distance in the flow field 

before it starts to burn. This causes the average length of the flame to increase and the 

flame to be more and more parallel to the flow as we approach blowout. 
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Figure 6.4: The typical snapshot of the flame for different values of probabilities of 

reignition (P) for a bluffbody stabilized flame. Note that the length of the 

flame reduces as value of P is reduced. There is growth of flame holes at 

lower values of P.  

The total CH* chemiluminescence intensity inside a bluff-body stabilized combustor was 

measured using a photomultiplier tube for different equivalence ratios. This measurement 

gives an indication of the unsteady reaction rate and hence the heat release rate inside the 

combustor. We compare this measured chemiluminescence intensity fluctuations at 

different equivalence ratios to the fluctuation of the population of flamelets inside the 

reaction field in the cellular automata model. Population of flamelets gives an estimate of 

heat release rate inside the combustor.  
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Figure 6.5: a) Variation of CH* chemiluminescence intensity for different values of 

equivalence ratio away and near lean blowout from experiment. b) Variation 

of flamelet population obtained from model (conical flame) for different 

values of P as we approach blowout. c) Variation of flamelet population 

obtained from model (bluff body combustor ) for different values of P as we 

approach blowout. As the combustor approaches blowout (i.e. when Eq. 

Ratio is reduced), the variations in the heat release rate reduces. Similarly, as 

P reduces, for the models of both combustors, the variation in flamelet 

population reduces. 
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We observe that there is a striking resemblance between the behavior of the model and 

the experiment. In both case, away from blowout, the variation of CH* is higher 

compared to that close to blowout. In experiments, the increased variance of 

chemiluminescence fluctuations away from blowout (stage 2) is the result of vigorous 

flame flapping that is caused due to the growing tendency of the reactive flow to exhibit 

absolute instability (Chaudhuri 2010).    

We also observe that close to the blowout, the oscillations have increased low-frequency 

content which can be attributed to the longer recovery times for the flame holes as we 

approach blowout. In experiments, the increase in low-frequency content for oscillations 

prior to blowout is reported previously by Nair & Lieuwen (2005).  

6.3 Similarities of blowout with an absorbing phase transition 

Population dynamics models can either be mean field based (MF) models such as a 

logistic model or models based on contact process (Marro and Dickman 1999, Hinrichsen 

2000a). In mean field models, the dispersion effect of the population does not affect the 

population growth rate. For example, in the logistic model, the growth rate depends on 

the carrying capacity of the environment and the total population at any moment both of 

which are mean field measures. Whereas, in a contact process the population growth is 

dispersion limited and the spatial distribution of the existing population influences the 

growth of population. That is birth and death process at any spatial location is influenced 

not only by the mean field measures but the local characteristics of the population 

distribution. Our model that describes the population of flamelets in a reactive flow field 

is a type of contact process. In the model, the birth of flamelet at any spatial location is 
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influenced by the characteristics of the fluid parcel at that place and the states of the fluid 

parcels in its neighborhood with which the fluid parcel is in contact with (and hence a 

contact process).   

In a contact process, the characteristics of extinction of population depend upon the 

dispersion characteristics of the system. Close to population extinction, the distribution of 

population becomes highly fragmented. This fragmentation further reduces the stability 

of the population. In Fig. 6.3 and Fig. 6.4, we can observe that at low values of P, the 

flame becomes more and more fragmented. This dispersion limited nature of population 

dynamics warrants that for a contact process, the population extinction is a threshold like 

process and is analogous to a critical phase transition (Obornay et al. 2005). In Fig. 6.6 

we see that as P reduces, the average density of population of flamelets reduces. We see 

that the reduction in population density is nonlinear with P. Furthermore, beyond a 

threshold value of P, the density of population goes to zero indicating an extinction of 

flamelets in the reactive field.  Similar observations are made in our experiments when 

the average CH* chemiluminescence intensity from a bluff body stabilized combustor 

was measured using a photomultiplier tube. We observe that the average CH* intensity 

reduces as equivalence ratio is reduced and goes to zero beyond a threshold value of 

equivalence ratio. We further note that the variation in average CH* intensity with 

equivalence ratio or flamelet population with P are nonlinear. Thus, population extinction 

of flamelets that corresponds to flame blowout in a combustor seems to have the 

characteristics of a threshold like process analogous to a critical phase transition. 
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Figure 6.6: a) Variation of average CH* intensity for different values of equivalence 

ratio obtained from the experiment. b) Variation of flamelet population for 

different values of P obtained from the population dynamics model for a 

conical flame. c) Variation of flamelet population for different values of P 

obtained from the population dynamics model for a bluff body stabilized 

flame.  

In the cellular automata model, the flame oscillation prior to blowout exhibit a metastable 

state during the intermittent formation of large flame holes followed by rapid transition to 

a reactive state which is short lived and produces a burst of energy in the system. This 

can also be observed in the behavior of CH* chemiluminescence intensity obtained from 

experiments just prior to flame blowout (Fig. 6.4a, Eq. Ratio = 0.28). Further, as the 

equivalence ratio is varied, the flame blows out. This flame blowout corresponds to the 

population extinction of flamelets in the CA model up on the reduction of P. In the 

context of population dynamics the extinct phase is called an absorbing state. Once 

reached, an absorbing state cannot be escaped by a mere dynamic transition (Hinrichsen, 

2000). Transition to absorbing state is ubiquitous in problems of non-equilibrium phase 

transitions that fall under the universality class of directed percolations. The CA model 

that we use to describe flame blowout transitions to an extinct phase. Upon reaching 

a) b) c) 
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extinction, the system is frozen or trapped in the extinct phase. Thus, suggesting that 

reduction of probability of flame propagation P, beyond a threshold value cause the 

system to undergo a phase transition into an absorbing state.  

6.5 Concluding remarks  

Considering that a turbulent flame can be viewed as a collection of flamelets, we were 

able to recast the problem of flame stabilization in a turbulent combustor as a problem of 

population dynamics of flamelets. In this context, the birth process of a flamelet was 

considered to be equivalent to the process of ignition of the reactants and the process of 

extinction of flame equivalent to the death of a flamelet. Further, lean blowout 

corresponds to a scenario where the inability of the reactive flow to sustain the chain 

reaction results in the extinction of the population of flamelets in the flow field.  A 

cellular automata model was constructed to capture the population dynamics of flamelets 

close to a flame blowout. We observed that the model can capture various dynamic 

characteristics of the flame close to lean blowout such as the stretching of the flame, the 

increase in the number of flame holes in the flame, reduction of average intensity of the 

flame, etc. Further, we observe that the cellular automata model that represent the 

dynamics of the turbulent combustor undergoes a phase transition to an absorbing state 

(the extinct phase) imitating flame blowout in the turbulent combustor.  
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CHAPTER  7 

Conclusions and Outlook 

The main focus of the present thesis was on characterizing the complex dynamics that a 

dump combustor with a bluff-body stabilized turbulent flame exhibits during transition 

from stable combustion to lean blowout. Using Multifractal Detrended Fluctuation 

Analysis (MFDFA), we were able to study the scaling characteristics of the pressure and 

chemiluminesence fluctuation. We observed that while we approach thermoacoustic 

instability, the multifractal spectrum width reduces to zero and as blowout is approached, 

the multifractal spectrum width increases. Thus we were able to propose a unifying 

description based on multifractality to both blowout and thermoacoustic instability where 

the onset of thermoacoustic instability can be considered as loss of multifractality and the 

approach to blowout as an increase in multifractal spectrum width. Further, we also show 

that Hurst exponent, in conjunction with equivalence ratio, can be used as a precursor to 

an impending blowout.   

The dynamic characteristics of the pressure oscillations at different equivalence ratios 

were studied using recurrence quantification analysis (RQA). We showed that various 

recurrence parameters such as trapping time, Shannon entropy of the lines parallel to the 

diagonal and recurrence rate increase as we approach an impending blowout due to the 

increased aperiodicity of the oscillations close to blowout and hence can serve as 

precursors to blowout. We also showed that a method of recurrence quantification 

analysis that doesn‟t involve phase space reconstruction and instead analyzes the 

recurrence of the value of the state variable in time is effective at prognosis of dynamic 
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transitions in a turbulent combustor. Since such a method is computationally less 

expensive, it can be adopted for online diagnostics of thermoacoustic instability and 

blowout in turbulent combustors.  

We observe that the turbulent combustor exhibits intermittency both prior to 

thermoacoustic instability and prior to lean blowout. Studying the characteristics of the 

corresponding recurrence plots, we observed that both intermittencies are possibly of 

Type II and are hence dynamically very similar. However, the high speed Mie scattering 

experiments showed that the flame dynamics corresponding to either intermittency is 

different due to the difference in the flame stabilization during both dynamic regimes. We 

also noted that the flame dynamics very close to blowout is largely affected by the 

intermittent formation of flame holes making the pressure oscillations just before blowout 

to be highly aperiodic. Even though we were successful in quantitatively characterizing 

the dynamics prior to blowout using recurrence quantification analysis, we were not able 

to systematically assert particular dynamical nature to the unsteady pressure or 

chemiluminesence fluctuations corresponding to the different flame dynamics observed 

very close to blowout (the 3 stages of blowout as described by Shanbhogue 2009). This 

should be the focus of a later study that intends to characterize the spatio-temporal 

dynamics of combustor close to lean blowout. 

Finally, we were able to provide a low order model that could capture the complex 

dynamics. In the model, the problem of flame stabilization in a turbulent combustor is 

recast as a problem of population dynamics of flamelets. In this context, the birth process 

of a flamelet is equivalent to the process of ignition of the reactants and the process of 

extinction of a flamelet is equivalent to the death of the flamelet. Also, lean blowout is a 
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scenario where the inability of the reactive flow to sustain the chain reaction results in the 

extinction of the population of flamelets in the flow field.  A cellular automata model was 

constructed to capture the population dynamics of free radicals close to flame blowout. 

The model is able to qualitatively mimic various dynamic characteristics of a turbulent 

flame close to lean blowout such as the stretching of the flame, the increase in the 

number of flame holes in the flame, reduction of average concentration of free radicals 

etc. Further, we observe that the cellular automata model that represents the dynamics of 

the turbulent combustor undergoes a phase transition to an extinct phase, imitating flame 

blowout in the turbulent combustor. The system is then trapped in this extinct phase from 

which the system cannot escape merely through a dynamic transition. Such a dynamic 

state is called an absorbing state and thus the transition to blowout can be considered as 

an absorbing phase transition. 

In summary, we were able to characterize the complex scaling behavior of acoustic 

oscillations prior to blowout. We characterized the intermittency in acoustic pressure 

fluctuations from stable combustion to blowout. Through these analyses, we were able to 

obtain precursors to an impending blowout. We were able to suggest a low order model 

that mimics the complex dynamics prior to lean blowout based on the population 

dynamics of flamelets. We observed that transition to blowout in the context of this 

model can be considered as an absorbing phase transition. 

The future work would involve identifying the specific dynamic states prior to blowout, 

characterizing the spatio-temporal behavior of the combustor at different dynamic states 

and thus identifying possible strategies to control both thermoacoustic oscillations and 

lean blowout. 
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APPENDIX A 

Online detection of thermoacoustic instability 

using tools from symbolic time series analysis 

In Chapter 3 and Chapter 4 of this thesis, we identified precursors to lean blowout based 

on RQA and multifractal analysis. These nonlinear techniques were first used to 

characterize oscillations leading to thermoacoustic instability. We extended those 

approaches to detecting an impending blowout. Previously, a nonlinear time series 

analysis technique, symbolic time series analysis was used to detect an impending 

blowout. However, the ability of this method to detect onset of thermoacoustic instability 

was never tested. In this Appendix, we show how symbolic time series analysis can be 

used to detect an impending thermoacoustic instability. 

In the past, various techniques were introduced in order to detect and control instabilities 

in combustion systems. Poinsot et al. (1992), introduced a technique to control 

instabilities in gas turbine engines. In this technique, the pressure fluctuation in the 

combustion chamber is measured and a delayed signal (control signal) is generated based 

on the pressure fluctuation signal, which in turn is used to modulate the fuel pressure 

inside the fuel line. By selecting an appropriate delay for the control signal, they were 

able to actively control the instability. Hobson et al. (2000) analyzed the stability of 

industrial gas turbine engines by monitoring the casing vibration and the pressure 

fluctuations inside the combustion chamber. They analyzed the stability of the engine in 

terms of frequency and bandwidth of the principal peak in the vibration and pressure 
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spectra. It was observed that as the system approached the stability limit, the bandwidth 

of the principal peak decreased. This was an indication for damping approaching zero 

near the stability limit. In a similar way, Lieuwen (2005) used autocorrelation of the 

pressure signals inside the combustor to characterize the damping of the system and 

thereby predict the stability margin. The techniques used above rely on detecting the 

characteristics of the instability to detect it. In our work we were interested in 

understanding the dynamics of the transition regime from combustion noise to 

combustion instability in order to come up with a precursor which can forewarn the 

operators about an impending instability.  

In the past, there have been a few studies that focused on the dynamics of the regime 

transition from stable to unstable operation of a combustor. Chakravarthy et al. (2007) in 

an experimental study suggested that a lock on mechanism between vortex shedding and 

duct acoustics was responsible for the transition. When the vortex shedding and the 

acoustic modes are not locked on, the system has low amplitude broadband noise and 

once the lock-on happens, the system has high amplitude tonal oscillations. Further, 

Gotoda et al. (2011) reported that in a turbulent combustor, as the equivalence ratio is 

varied from stoichiometric to lean limits, transition from stochastic 

fluctuations(combustion noise) to periodic oscillation happened through a state of low 

dimensional chaos.  

Recently, Nair et al. (2013) studied the characteristics of the transition region using tools 

from dynamical system theory. They established that combustion noise resulting from 

combustion of a turbulent flow in a confined enviornment is not stochastic and is in fact 

chaos of moderately high dimension (of the order of 8 to 10). Further, it was shown that 
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the onset of instability is essentially a transition from chaos to order. They used a test for 

chaos, known as 0–1 test for chaos (Gottwald & Melbourne 2004), as a measure of the 

proximity of the combustor to an impending instability. Nair et al. (2013) also indicated 

that the transition from chaos to order happened through intermittency (Nair & Sujith 

2013). In this context, they introduced recurrence parameters as precursors to the 

impending instability in a practical gas turbine combustor (Nair et al., 2012). In this 

appendix, we introduce a method based on symbolic time series analysis in order to 

detect the proximity of a particular dynamic state of the combustor to that of instability 

by analyzing the peculiar patterns in time series data of unsteady pressure fluctuations 

born out of the dynamics in the transition regime. 

Symbolic time series analysis provides a simpler way to analyze the dynamics of 

nonlinear systems (Ray, 2004). A symbolic time series can be generated from a time 

series obtained from experiments or simulations in various ways. The different 

approaches to construct a symbolic time series is described by Daw et al. (2003). 

Rajagopalan & Ray (2006) and Subbu & Ray (2008) describe different methods used to 

generate a symbolic time series. Further they also describe a procedure for early detection 

of anomalous behaviors in dynamical systems based on symbolic dynamic filtering 

(SDF).Application of anomaly detection using SDF was carried out successfully in 

various physical systems (Gupta et al., 2007, Bhambare et al., 2008). Gupta et al. (2006), 

Chakraborty et al. (2008) and Datta et al. (2006) used SDF to detect the extinction events 

in a mathematical model describing a pulse combustor. Dynamics of a spark ignition 

engine was characterized by Daw et al. (1998) using symbolic time series analysis. 
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Mukhopadhyay et al. (2013) used symbolic time series analysis for prediction of lean 

blow out in laboratory-scale gas turbine combustors.  

In this chapter, we describe a methodology to detect the proximity of the dynamic state of 

a combustor to an impending instability (Unni et al. 2013). This methodology uses 

symbolic time series analysis for identifying the precursor to the impending instability. A 

detailed description of symbolic time series analysis is given in the following section. 

A.1  Symbolic time series analysis 

Symbolic time series analysis is a technique used in order to encode the complex 

dynamics of a system embedded in a time series signal { [ ]|         into a set 

of finite number of variables. The particular analysis technique used in here involves a 

three-step process. The first step is the generation of the symbolic time series {  [ ]  

from the actual time series. The second step is the construction of a state vector     

corresponding to the symbolic time series, representing the dynamics of the state that is 

responsible for the generation of the actual time series { [ ]|        . In the third 

step, an anomaly measure   is defined which serves as an indicator of the proximity of a 

dynamical state to the stability margin. Detailed explanations for these processes are 

given in the following subsections.   

A.1.a. Construction of a symbolic time series 

Consider the time series signal { [ ]|         . This signal is a discrete function 

in time represented by the   data points,   being the length of the time series signal. The 

data point at the  th
 instant is  [ ]. Each of the data point has a particular value [ ] and 
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a particular time stamp „ ‟ associated with it. Now in order to construct the symbolic 

time series from the time series signal { [ ]|         , the   data points 

constituting the time series signal are partitioned into a mutually exclusive and exhaustive 

set of finitely many segments. Here, the partitioning is performed by dividing the points 

into different sets based on the range of the instantaneous value ( [ ]) in which they lie 

(illustrated in Fig. A.1a, the details on how the upper and lower limit of value of  [ ] for 

each partition is selected and how the number of partitions is decided are described later). 

This technique of directly partitioning the time series is called „simple partitioning‟. 

Further descriptions of partitioning techniques are described by Ray (2004) and 

Mukherjee & Ray ( 2014). Here, the number of segments for partition is fixed to be 10. 

Once the data points are partitioned, each partition is represented by a particular symbol 

(For the purpose of illustration, assume that we are partitioning the data points into 4 

segments,           ).Now, the value of the time series data at each instant  is replaced 

by the symbol corresponding to the partition to which that particular data point belongs. 

Thus a symbolic time series is generated (Fig. A.1.b). 

A.1.b. Construction of Probabilistic Finite State Automata (PFSA)  

Once the symbolic time series {  [ ] is generated, a probabilistic finite time automata is 

constructed to represent the dynamic state that generated the time series { [ ]|  

      . The main assumption in construction of PFSA is that the symbolic process 

(represented by the symbolic series) under all conditions can be approximated as a 

Markov chain of order   ( - Markov machine) representing a quasi- stationary stochastic 

process. For a  - Markov machine, probability of occurrence of a new symbol depends 
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only on the last D symbols, implying that the memory of the system is only extended up 

to D past observational instances. With this assumption, the states of the D- Markov 

machine are essentially represented by a word of length D in the symbol string of the 

symbolic time series. Hence, for a symbolic series represented by   symbols, the number 

of possible states in a D- Markov machine is   . With increase in the word size D, the 

memory embedded in the Markov states of the PFSA increases.  
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Figure. A.1. Construction of symbolic state probability histogram from a finite time - 

time series data (here, we use the unsteady pressure time series data from a 

combustor). Note that the different steps involved are a) Simple partitioning, 

b) generation of a „symbolic sequence‟, c) construction of a „finite state 

machine‟, and d) developing a „state probability histogram‟(representative of 

state probability vector). 

However, as D increases, the total number of possible states for PFSA increases and 

hence the computational expenses needed to construct the PFSA also increases. Keeping 
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this in mind, we have restricted the word size D to 1. Hence, the number of states 

possible for the PFSA constructed in this work is  .  

It is seen from the experiments that with a word size of 1 itself, the predictability of the 

control system for the instability analysis is quite impressive although D>1 is expected to 

produce more accurate results  at the expense of significant increase in computational 

effort. 

A.1.c. Construction of the Anomaly measure 

First step in constructing an anomaly measure is identifying a reference state. The 

anomaly measure in this particular work is expected to indicate the proximity of the 

current state to the onset of instability (here, the current state is the state for which the 

anomaly measure is estimated). Hence, it is only natural to select the dynamical state 

corresponding to the onset of instability as the reference state. Once the reference state is 

identified (in the context of this work, a method for identifying the appropriate reference 

state, i.e. the state that is considered as the onset of instability or stability margin is 

described in Section 4), then the data points in the pressure time series corresponding to 

the reference state is partitioned into   mutually exclusive and exhaustive segments in 

such a way that each of the segment contains approximately equal number of data points. 

The partition technique used here is equiprobable partitioning, which is based on 

maximization of information entropy, as seen in Fig. A.1.The implication is that when 

PFSA is constructed using this partition, the reference state will have a uniform 

probability for all symbolic states (   is the state probability vector for the reference 

state). Once the partitioning of reference state is performed, same partition is used in 

order to construct the symbolic time series corresponding to the other dynamical states. 
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Hence, when PFSA is constructed for dynamical states other than the reference 

dynamical state, the probabilities associated with symbolic states have a non-uniform 

distribution (   is the state probability vector for the current state). Thus, an anomaly 

measure, which is an indicator of proximity of a dynamical state to the reference state, is 

defined as follows, 

       (
      

‖  ‖‖  ‖
) 

Here,        is the inner product of the state probability vectors   and   and 

‖ ‖denotes the Euclidian norm of the vector  . More details of anomaly detection using 

symbolic logic have been described by Ray (2004). 

A.2  Results and discussions. 

In this study, the experiments were conducted as follows. For a given value of fuel flow 

rate (for example, 28 SLPM), the air flow rate was varied in a quasi-steady manner. The 

initial airflow rate was chosen in such a way that it corresponded to an equivalence ratio 

of one. Subsequently air flow rate was increased, thereby reducing the equivalence ratio. 

At each equivalence ratio, the dynamics of the pressure fluctuations inside the combustor 

was recorded by acquiring the unsteady pressure time trace using a piezoelectric 

transducer. The time series data of these pressure fluctuations at various air flow rates are 

then used to perform symbolic time series analysis for anomaly detection. As described in 

Section 2c, the first step in the analysis is identifying an appropriate reference dynamical 

state. In order to identify that, we adopt the following procedure. Henceforth, we refer to 

this procedure as the training drill for online anomaly detection. 
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The aim of the training drill is to identify that particular pattern of oscillations in the 

combustor, which is to be considered as the appropriate margin for the operational regime 

of the combustor such that instability can be avoided. In order to identify such a margin, 

we apply anomaly detection technique to the normalized time series data taking a unit 

amplitude sinusoidal wave with a frequency approximately equal to the instability 

frequency(in this context, the instability frequency corresponds to the natural frequency 

of the combustor at which an instability is expected)as the reference state. On doing so, 

we essentially are comparing the pattern of the normalized time series representing a 

particular dynamical state to that of a state of instability. Hence, an anomaly measure 

defined in this context as described in the § A.1 will approach zero as we approach a state 

of instability (Fig. A.2a and Fig. A.3a). Due to the particular nature of the partitioning 

performed in this work (simple equiprobable partitioning), this decrease in anomaly 

measure is rather rapid and very close to the onset of instability (note that the anomaly 

ratio is almost constant prior to the first drop). Nevertheless, this decrease in anomaly 

measure is an indicator for the dynamics of the state being close to that of a limit cycle 

behavior. Hence, from this training drill, we select the time series corresponding to point 

„A‟ (marked in both Fig. A.2a and Fig. A.3a) as the representative time series for the 

reference dynamical state to be used in the online anomaly detection for the respective 

cases. However, depending up on the discretion of the operator and the design of a 

particular combustor, dynamic states further close to instability can also be used as the 

reference state. Further, it is to be noted that a rise is pressure amplitude is not necessarily 

suggestive of presence of instability. The rise in the amplitude of pressure signals could 

even correspond to an increase in the intensity of combustion noise. Whereas, with the 
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aforementioned technique, we can clearly identify whether we are approaching an 

impending instability since a decrease in the anomaly measure is a sure indicator of the 

increased presence of sinusoidal component in the time series. 

Once the reference state for online anomaly detection is fixed, the anomaly measure for 

online detection of an impending instability is defined as described in § A.1. Examining 

the variation of anomaly measure with airflow rate, we see that (Fig. A.2b and Fig. 

A.3b)as the system approaches the reference state, the anomaly measure starts to reduce; 

i.e., the angle between the PFSA of the reference state and the current state approaches 

zero as the current state approaches the reference state. Furthermore, unlike in the case of 

anomaly measure defined for the training drill, the anomaly measure for online detection 

starts reducing towards zero much before the reference dynamical state. These behaviors 

are explained in the following paragraphs. 

At low airflow rates (i.e., near stoichiometric equivalence ratios), the pressure fluctuation 

inside the combustor is mainly due to combustion and flow noise. These oscillations have 

amplitudes of the order of 200 Pa (Fig. A.4a). Further, it has been already shown that 

these oscillations are chaos of moderately high dimension (8 to 10 dimensions) (Nair et 

al., 2013). Hence when the PFSA is formed for the time series corresponding to 

combustion and flow noise, using the partition corresponding to the time series 

representing the reference state (A), most of the data points fall in those symbolic 

segments which correspond to low values of | |. Hence, the corresponding PFSA has a 

probability distribution as seen in the Fig. A.4e. 
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Figure A.2: Variation of anomaly measure for combustor with a swirl stabilized flame. 

a) Represent the training drill and b) represent the online anomaly detection 

drill. The reduction of anomaly measure as we approach the reference state 

( ) is the precursor to instability. 

Now as we increase the airflow rate (i.e., move towards lean equivalence ratios), the 

pressure oscillations start to become intermittent. This intermittent behavior of the 

pressure signals arise from the fact that the state point corresponding to the dynamical 

state responsible for these oscillations follow a homoclinic orbit in the phase space (Nair 

& Sujith, 2013).In this homoclinic orbit, the state point alternates between a chaotic 

attractor corresponding to the low amplitude fluctuations to an attractor corresponding to 

the high amplitude limit cycle oscillations in an apparently random fashion. As the 

equivalence ratio decreases away from the stoichiometric equivalence ratio, the time 

spent by the state point in the chaotic attractors reduces and the time spent in the attractor 
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corresponding to the limit cycle increases. In the time series, the effect of this dynamical 

behavior is reflected. 
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Figure A.3: Application of anomaly detection technique to a combustor with bluff body 

stabilized flame. a) Represent the training drill and b) represent the online 

anomaly detection drill. The reduction of anomaly measure as we approach 

the reference state ( ) is the precursor to instability. 

During intermittency, the time series is characterized by alternating low amplitude 

chaotic oscillations and high amplitude limit cycle oscillations. As we approach closer to 

instability, in the time series, the duration for which the limit cycle oscillations are 

observed increases and the duration of chaotic oscillation decreases. This implies the 

probability associated with the symbols corresponding to the high amplitude oscillations 

increases as we approach the instability. Also, the symbol sequence increasingly matches 

to that of the reference state (a near limit cycle state).Ultimately at the reference state all 
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the symbols have an equal probability associated with it (Fig. A.4g). If we move beyond 

reference state, the amplitude of the time series increases due to increased proximity to 

the instability and hence the symbols corresponding to the higher amplitudes have a 

higher occurrence probability (Fig. A.4h). This leads to an increase in the anomaly 

measure beyond the reference state. From Fig. A.2b and Fig. A.3b it can be observed that 

a state before and beyond the reference state can have the same value of anomaly 

measure.  
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Figure A.4: The variation of signal characteristics and corresponding PSFAs as 

the system approaches instability. a) and e) represent combustion 

noise at equivalence ratio 1. b) and f) represent an intermediate state, 

c) and g) represent the reference state and d) and h) represent a state 

beyond the reference state. 
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However, in such a case, they can be distinguished by comparing the probability 

distribution of the symbolic states. For example, Fig. A.4b and Fig. A.4d represent two 

time series with similar value for anomaly measure. However, comparing the 

corresponding occurrence probability distribution, it is clear that Fig. A.4d represents a 

dynamical state beyond the reference state. From the above discussions, it is clear that the 

anomaly measure approaching zero is a precursor to the onset of instability.  

In essence, using symbolic time series analysis, we are able to compare the patterns 

present in the time series corresponding to any dynamical state to that of the reference 

state by defining a vector measure (state probability vector, Fig. A.3) corresponding to 

each pattern. We see that the occurrence probability distribution of symbolic state varies 

continuously as we approach the reference state (Fig. A.3). We exploit this behavior of 

state probability vectors to define the anomaly measure which indicates the proximity of 

any state to the reference state. Since the particular patterns found in the pressure time 

series arises due to intermittency and intermittency is a dynamic behavior, time series 

corresponding to other measurements (such as heat release rate fluctuations, temperature 

fluctuations etc.) from the combustion system must also exhibit similar patterns close to 

instability. Hence, such measurements also could be used in a similar fashion to predict 

the onset of instability. 

A.3 Concluding remarks 

Anomaly detection technique, a novel strategy of online prediction of an impending 

instability is developed based on symbolic time series analysis. A precursor for an 

impending instability, i.e. the anomaly measure, was identified from unsteady pressure 



 126 

measurements for two types of combustors (a swirl stabilized combustor and a bluff body 

stabilized combustor). Using anomaly detection technique, we were able to compare the 

pattern of a time series at any instant to that of a reference pattern and thereby quantify 

the proximity of the instantaneous dynamical state to a reference dynamical state (a 

dynamical state close to onset of instability). In this context, a novel method of 

identifying an appropriate reference state for online instability detection, i.e. the training 

drill, was introduced. The current technique of anomaly detection uses a simple method 

for partition of time series data known as simple equiprobable partition. More research 

has to be performed in order to identify the optimal partitioning technique to be used for 

predicting an impending instability in a combustor. Further, the effects of increasing the 

word size   for the formation of PFSA on the predictive capabilities of anomaly measure 

also have to be studied. However, anomaly measure thus identified was able to indicate 

the proximity of the combustion system to regimes of instability for both the combustors. 
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APPENDIX B 

Multifractal detrended fluctuation analysis 

(MFDFA) 

Detrended fluctuation analysis (DFA) can be used to characterize the multifractal 

charecteristics of a time series, P(t). First, the time series is mean adjusted to get a 

cumulative deviate series   as,  

   ∑          
     where, m is the mean of time series P(t). 

The deviate series is then separated into an integer number    of non-overlapping 

segments of equal width   (              ). A local polynomial fit  ̅  is made to the 

deviate series      and the fluctuations about the fit are obtained by subtracting the 

polynomial fit from the deviate series. Now, we define a structure function   
 
  of order q 

and span w as, 
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Structure function represents the divergence rate of non-stationary, detrended 

fluctuations.   
 
 is a function of both the order q and span w. The generalized Hurst 

exponent of the order  ,     is the slope of the linear regime in a log-log plot of   
 
, for a 

range of span sizes    For mono fractal and non-fractal signals, is constant with  .    

varies with   for multifractal signals. That is, the scaling of fluctuation is depended up on 
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the amplitude of the fluctuation. The variation of    with   can alternatively be 

represented as a spectrum of singularities      through a Legendre transformation. 

          ;             
   

  
  ;  and                 

The curve between      and α is called the multifractal spectrum which gives the 

information about the varying fractal nature of the signal. 
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